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ABSTRACT

This thesis presents a control architecture that achieves operating standby
redundancy for a voltage source inverter controller. The system was designed to increase
reliability by switching from the primary to the secondary controller when a fault to the
primary controller occurs. The behavior of the system was predicted using a computer
model representing the redundant controller architecture. The simulated results were then
verified in lab hardware comprising two FPGAS, a three phase rectifier, an LC filter, and
a resistive load. Both simulated and experimental results validate that the final redundant
controller design switches between redundant controllers with a negligible disturbance.
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EXECUTIVE SUMMARY

This thesis was conducted to ascertain the feasibility of a strategy to develop a
more reliable voltage source inverter (VSI) through operating standby redundant
controller architecture. The goal of this research was to determining the level of
disturbance in a VSI during a switching event between the primary and redundant
controller. Both of the controllers in the VSI for this research were designed based on the
closed loop space vector modulation controller developed in the NPS power lab that
contained an outer voltage Proportional-Integral (PI) control loop and an inner current Pl
control loop.

The first objective of this thesis was to design a voltage source inverter with a
primary and secondary controller that had a fault signal to act as a failure in the primary
controller. When the fault was detected the system would automatically switch from the
primary to the secondary controller. The secondary controller would operate physically
independent of the primary controller to reduce the risk of damage when a fault occurred,
thereby providing true redundancy. Once the ability to switch between controllers was
established the second objective was to synchronize both controllers to prevent a random
phase shift when a fault occurred. The third and final objective was to enable the
secondary controller to begin running with the same internal values as the primary
controller had when the fault was detected in order to minimize any disturbance to the
VSI output.

The hardware in this project consisted of two Virtex Il development kit FPGAS
connected to customized interface cards, a three phase rectifier, an LC filter, and a
resistive load. The Virtex Il FPGA contained the design software that produced the six
modulated output signals that went into the six step three phase rectifier. The interface
card allowed the two FPGAs to pass information to each other as well as connect with the
other hardware components. The three phase rectifier connected to an LC filter with the
capacitors in a Delta configuration in order to run a load of three resistors in a Delta

configuration. Measurements of Vap, Vi, ia, and i, were then fed back into the FPGA via
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the interface card in order to produce the hardware configuration of the voltage source
inverter with a closed loop control system shown in Figure 1.

Two XILINX Virtex Il FPGAs

I

Two Custom interface
cards Voltage Feedback (v,)

Voltage Feedback (v,,)

Current Feedback (i,)

(A/D converters and
dlgltal |/O) «Current| Feedback (i)

lA*lA'lB*lB'lC*lC'lbrake

v Q” 2
O] )

RL RL

R

Figure 1. Diagram of Hardware Configuration.

The controller software had been previously designed in the NPS power lab using
XILINX blocks to create the VHDL code for the FPGA and SIMULINK blocks to model
the behavior of the hardware components external to the FPGA and interface boards in
order to produce the computer simulations. There were several software additions and
modifications that had to be made to the controller design in order to achieve the research
objectives. The software used to create the redundant controller architecture consisted of
a primary and a secondary controller block, an A to D converter block that read the
feedback from the system, and a switching unit subsystem that switched between
controllers when a fault was sensed. SIMULINK blocks were used to simulate the
behavior of the three phase rectifier, LC filter, and resistive load in order to produce
predictive simulation results prior to loading the software on the FPGAs. The software
picture of the final design is shown in Figure 2.
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Figure 2. XILINX Model of the Redundant Controller Design.

The first configuration of the redundant controller design only passed the fault
signal from the primary to the secondary controller, which produced considerable
disturbance in both the phase and amplitude of the VSI output during the switching event.
Once the ability to switch between the two controllers had been achieved the next step
was to try and eliminate the disturbance in the output due to the switching. The solution
to eliminate the random phase shift observed in the output was to send a synchronization
signal from the primary controller to the secondary controller. The synchronization
signal stopped the internal values of the two controllers from drifting apart over time due
to the independent clocks on both boards. This additional communication between the
two controllers produced an output that maintained its phase during the switching event

but still had amplitude disturbance.
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The solution for minimizing the amplitude disturbance was to pass the integrator
values in the PI control loops of the primary controller to the secondary controller so they
could be used as initial conditions for its integrator values when a fault occurred. Until
this point in the design it was necessary to keep the secondary controller’s integrator
values set to zero to prevent it from coming online at some random point and potentially
damaging the VSI. However, keeping the integrator values at zero prior to sensing a fault
in the system meant that the VSI output would have to start at zero and transition to
steady state, which caused the disturbance in the amplitude of the output.

The process of sending data between two physically independent FPGAs added
an extra degree of difficulty to the solution. In order to send a binary value out of the
FPGA there had to be one FPGA pin assigned for each bit of the value. Therefore, a
solution to serialize and concatenate the bits of the four integrator values of the primary
controller was developed. This allowed the four values to be sent from the primary
controller across a single bit output and received by the secondary controller by a single
bit input. Once the serialized data was in the secondary board it was deserialized into the
four separate values through the deserializtion portion of the software and sent to the
appropriate PI control blocks. Both the simulated and experimental results of this design
showed virtually no disturbance in the VSI output during the switching event when the
synchronization signal and the serialized initial conditions were passed from the primary
to the secondary controller.

The VSI used in this thesis was designed using computer simulations that were
then confirmed through experimental results at each stage of the research. This thesis
successfully showed the ability of a VSI to sense the failure of the primary controller and
switch to the secondary controller without any disturbance in the voltage output.
Achieving these objectives demonstrated the potential for the reliability of a VSI to be
significantly improved through the implementation of operating standby redundant
controller architecture. Confirming the ability to seamlessly switch from one controller
to another while the system was in operation provides a basis for further development of
a robust redundant architecture for a VSI. Some follow on research that would be

required includes:

XVi



e Reducing the distortion in the VSI output due the gain values and noise in

the hardware design.

e Implementation of additional redundant components such as a four-switch

pole inverter topology.

As our world becomes increasingly dependent on technology, the need to power
that technology with fewer interruptions is also increasing. The redundancy design
presented in this thesis was shown to be an effective approach to increase the power

supply reliability in both military and civilian industry.
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l. INTRODUCTION

A. BACKGROUND

This thesis was conducted to ascertain the feasibility of a strategy to develop a
more reliable voltage source inverter (VSI) through operating standby redundant
controller architecture. The goal of this research was to determine and minimize the level
of disturbance in the output of a VSI during a switching event from the primary to the
redundant controller. Both of the controllers in the VSI for this research were designed
as closed loop space vector modulation controllers that contained an outer voltage
Proportional-Integral (PI) control loop and an inner current Pl control loop. The research
conducted on this VSI configuration used computer simulations and experimental
measurements to demonstrate the ability of the system to switch from a primary to a
secondary controller upon sensing a fault single. The results of these experiments also
demonstrated the amount of disturbance to the system output during the switching event
showing its potential for use in mission critical systems for both the military and civilian

industry.

The reduction in the output disturbance was a critical component of this research.
If the output disturbance during the switching event from the primary to the secondary
controller could not be reduced to an acceptable level, the redundant controller
architecture would not be a viable way to increase reliability. According to MIL-STD-
1399 section 300A, the maximum departure voltage ranges from plus or minus 6 to plus
or minus 2.5 percent, and the worst case voltage excursion from nominal user voltage
ranges from plus or minus 20 to plus or minus 5.5 percent depending on the type of

equipment being operated [1].

Increasing the reliability in electronic power supplies through redundant
architectures has obvious benefits for combat or shipboard systems that need to stay
online during critical operations. Any vital electronic system used for either military or
civilian applications would benefit from a power supply with increased reliability.

Although this research only dealt with one redundant controller in order to demonstrate
1



the effects of the switching on the VSI output, the techniques in this research could also
be applied to designs with additional redundant components. All of the solutions in this
thesis were first implemented and evaluated using computer simulations, and then

physical models were built in order to produce real world experimental data.
B. OBJECTIVES AND APPROACH

The first objective of this thesis was to design a voltage source inverter with a
primary and secondary controller that had a fault signal to simulate a failure in the
primary controller. When the fault was detected the system would automatically switch
from the primary to the secondary controller. The secondary controller would operate
physically independent of the primary controller to reduce the risk of damage when a
fault occurred, thereby providing true redundancy. Once the ability to switch between
controllers was established the second objective was to synchronize both controllers to
prevent a random phase shift when a fault occurred. The third and final objective was to
enable the secondary controller to begin running with the same internal values as the
primary controller had when the fault was detected in order to minimize any disturbance
to the VSI output.

The basic design layout for this thesis to achieve all of the objectives is shown in
Figure 3. The controllers were loaded on two separate boards with three physical
connections going from the primary to the secondary controller. The first connection was
to pass the fault signal, which would initialize the integrators of the secondary controller
when the primary controller failed. The fault signal was also sent from the primary
controller to the switching unit in order to switch the output gate signals from the primary
to the secondary controller. Placing the controllers on separate boards with a fault signal
connecting the primary controller, secondary controller, and switching unit achieved the
first objective of the research. The second connection sent a pulse signal to keep the
internal values of the two controllers synchronized. This connection from the primary to
the secondary controller achieved the second objective. The third connection was to pass
the values of the primary controller’s integrators in order to provide a starting value for
the secondary controller’s integrators. This third connection from the primary to the

2



secondary controller achieved the third objective of the research by enabling the
secondary controller to start with the same internal values that the primary controller had
when the fault was detected.

oy
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Vap. Controller #1 o -
- S8 - Bplus o
Ve o
L Sic o
. o Cplus
(Four 12 bit words | o 3 | >
passed serially) % s |2 |& .
e g) = . Switch Anminus _
? 3 o
. A J h J
Ié Saa . Bminus .
ib Som Inverter/
> > Cminus o load
Vap Controller #2 Sac - o
Vb£
Figure 3. Block Diagram of Redundant Controller VSI.

The redundant controller design was built with two FPGAs programmed using
XILINX System Generator and ISE foundation with a discrete algorithm representing the
controller architecture shown in Figure 3. XILINX blocks in SIMULINK were used to
design the software that was loaded on the two FPGA boards which enabled the
simulated behavior of the system to be observed prior to loading the software on the
boards. At each stage of the research the software simulation was run in SIMULINK,
and the output voltage was observed. Based on the simulated observation, the software

was adjusted accordingly until it produced the desired behavior. Once the simulation



results were acceptable the software was loaded in the FPGAs and experimental
measurements were taken using oscilloscopes and Chipscope software from XILINX.
The experimental results were then compared with the software simulations to evaluate

any differences.
C. RELATED WORK

The issue of power source reliability has always been a subject of concern for
power engineers, and there has been a great deal of research done on different methods of
fault detection and redundancy to help increase reliability. A paper presented in 1998 at
the International Telecommunications Energy Conference showed evidence which
demonstrated the advantages of using modules operating in parallel to achieve increased
reliability in dc-ac inverter systems used in uninterrupted power supply systems [2]. Two
different redundant configurations, a master-slave and a multi-master, were evaluated to
determine the most reliable. The master-slave configuration consisted of one central
intelligence module (master) and several local intelligence modules (slaves) that could
partly take control of a master failure. The multi-master configuration was designed with
all of the modules as independent and equal with full digital control. The multi-master
configuration was mathematically shown to be more reliable than the master-slave due to
the dependence of all the local intelligence modules on the one centralized master.
Therefore, the greater the level of dependency in a redundant inverter system the less

reliability the system will have.

Another important issue related to redundancy is the ability to identify and detect
the fault modes of an inverter system in order to properly implement the redundant
architecture. One such paper explored various fault modes of a voltage-fed Pulse Width
Modulation (PWM) inverter system [3]. This research showed an alternative method for
increasing reliability in a system as well as the complexity involved in trying to identify
specific faults in a system. While it did not address redundant applications, it did
demonstrate how the proper detection of a fault in an inverter could help increase
reliability by allowing the system to compensate for the fault and operate safely in a
degraded mode. An advantage redundant architecture has over fault compensation is the

4



ability to simply shut down the affected component and bring the redundant component
online to avoid running the system in a degraded state.

Achieving increased reliability through redundant architectures is also being
actively researched for the civilian process industries. A paper concerning reliability of
different megawatt drive concepts also discussed some optional redundant designs for a
VSI [4]. The redundant approach for that research was to create multiple redundant
cellular structures of the Insulated Gate Bipolar Transistor (IGBT) building blocks of the
VSI.

These papers on related reliability topics are just a few examples of how diverse
this research is in the field of power electronics. The approach taken in this thesis was
based on the design concepts presented in reference [5]. In that paper an in depth
analysis of the reliability of two different redundant inverter topologies were compared.
The redundant four-switch-pole topology was determined to be more reliable than the
alternative of a redundant two-switch pole topology. The concept of placing the four-
switch-pole inverter in the operating standby redundant controller design was then

presented. The block diagram of overall design is shown in Figure 4.
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Figure 4. Controller Architecture for Operating Standby Redundancy with

Four-Switch Pole Inverter Topology [5].

This thesis took the first steps toward determining the validity of this design by
showing the level of disturbance in the VSI output produced from switching to the
redundant controller when the primary controller failed. Developing an operating
standby redundant controller architecture that would produce little to no disturbance in
the output of the VSI was necessary to achieve before this design could be explored
further. For this research a regular three phase inverter topology without any switching

redundancy was used in order to specifically focus on the controller redundancy.
D. RELIABILITY ANALYSIS

The primary reason for this research was to make a VVSI more reliable through the
addition of a redundant controller. Therefore, the affects of the additional components on
the overall reliability of a VSI should first be quantified. The potential increase in

reliability for the VSI can be demonstrated by determining the reliability of each
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additional component and how the set up of those components affect the overall system
using reference [6]. In this thesis the VSI had an additional controller placed in parallel
to the original controller, and that parallel configuration was then placed in series with a
switching unit. In order to calculate reliability it is first necessary to define the failure
rate (A), which is shown in equation (1.1). Reliability as a function of time is then
expressed by equation (1.2), which produces a value greater than 0 and less than 1.

P Number of_fallures (1.1)
Total operating hours

R(t)=e™* (1.2)

Since the failure of both controllers is required for the system to fail, the primary

and secondary controllers are considered to be running in parallel when calculating the
reliability of the system. Equation (1.3) shows the calculation of components in parallel
with different reliability values, where n represents the number of components in parallel.
Equation (1.4) is a modification of equation (1.3) to represent when the reliability of each
component is equal. The reliability of components operating in series is shown in
equation (1.5), where n represents the number of components in series. Based on these
equations the change in reliability from a single controller (Reontr) to a redundant
configuration with a second controller that has the same reliability and a switching unit in

series with a reliability of (Ry,) can be expressed by equation (1.6).

Roate =1~ 1= R)A-R,)....1-R)) (1.3)
Roarane =1—(1=R)" (1.4)

Reeries = (R)(Ry)-(Ry) (1.5)

Rrgar = Rou[1= (1= Ry )’] (1.6)



From equation (1.6) it can be shown that the reliability of the VSI has the
potential to be significantly increased by placing a redundant controller in parallel with
the primary controller. However, the reliability of the system also has the potential to be
decreased based on the reliability of the switching unit. These equations demonstrate the
trade-offs that must be considered when using redundant components to increase

reliability.
E. THESIS ORGANIZATION

The following chapters of this thesis are laid out to provide a clear understanding
of what was used in the design process and how the research was conducted. Chapter 1l
gives a detailed description of the software for the closed loop controller used as the
foundation for both the primary and secondary controllers in the system. Chapter IlI
describes the hardware components that were chosen for the design and how they
interacted. Chapter 1V discusses the software design used to produce the basic redundant
controller architecture that achieved the first objective of the research. Chapter IV also
provides the simulated and experimental results of that design. Chapter V presents the
approach used to synchronize the internal values of the two controllers in order to
eliminate the phase shift in the VSI output during the switching event which achieved the
second objective of the research. The simulated and experimental results for that design
are also provided in the chapter. Chapter VI presents the design used to achieve the third
and final objective of the research along with the simulated and experimental results that
demonstrated the ability of the design to switch with negligible disturbance. Finally,
Chapter VII presents the conclusions made based on all the simulated and experimental
results of the voltage source inverter designs. This chapter also discusses the potential
for follow on work based on this research.



II. CONTROLLER CONFIGURATION

The approach used to achieve the goals for this thesis was based on the controller
design chosen to be implemented in the VSI. Both of the controllers in the VSI for this
research were based on software that had been previously designed in the NPS power lab
to use space vector modulation to modulate the six transistor switches of the three phase
rectifier [7]. The closed loop configuration of the controllers contained an outer voltage
P1 control loop and an inner current Pl control loop. The software was designed using
the XILINX block set to produce this type of controller and SIMULINK blocks to model
the behavior of the hardware components external to the FPGA and interface boards.
The XILINX blocks were software additions to SIMULINK that generate the VHDL
code required to load the design on the FPGA while the SIMULINK blocks provided a
mathematical representation of the hardware in order to produce computer generated
simulations of the system. The following sections give a breakdown of the basic
controller software design along with the mathematical SIMULINK design that was used
to implement the redundant controller architecture simulations for this thesis. For the
purposes of this paper, the superscripts e and s represent the synchronous and stationary
frames respectively, the subscripts g and d represent the q and d axes, and the subscripts

a, b, and c represent the three phases of the voltage and current values.
A. BASIC CONTROLLER DESIGN

The basic design of the controller was the foundation that all of the other software
components in this thesis were designed around. This basic configuration was then
modified to produce an efficient redundant architecture with a primary controller and one
redundant secondary controller. In the design of the closed loop controller the values for
the two synchronous frame reference phase voltages (Veqer and Veqrer) Were set to 50
volts and 0 volts respectively by using two constants from the XILINX block library.
The controller worked by comparing the reference values to the voltage feedback values
in the synchronous frame and sending the results into the first Pl controller. The first Pl
controller then produced reference values for the currents that were compared to the
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current feedback values in the synchronous frame and sent into the second Pl controller.
The outputs of the second PI controller were then converted from the synchronous to the
stationary frame and sent into the space vector modulation block. The space vector
modulation block took the final voltage reference values and translated them into gate
signals to be read by the three phase rectifier. Finally the output of the hardware
configuration was sent back into the A to D converter to close the loop on the control
system. This basic operation for both controllers is laid out in the block diagram in

Figure 5.
Gate signals
e
Veqdref + Pl qudref+ Pl Veqd qd Vsqdref Space © Inverter
Z control control » fo > vector fload
y qd® modulation
_A -
e
V-ad I°qd |
. _ la ia
) | abctoqd® [ 5™ |
(phase input) | I 21 ib
- B
o
Vab o
abcto qd® [« Vbo \ 2 |
(L-L input) | < |
Ic measurement not
needed |
Figure 5. Basic Space Vector Modulation Controller Configuration.

B. THETA DESIGN

The rate of theta was also designed into the software using the XILINX block
library.  The basic design for the theta value was made up of a constant value of 27
multiplied by the frequency of the system (100 Hz) multiplied by the clock period of the
system (40ns). This constant value was sampled every clock period and sent into an
accumulator. The accumulator output was then sent back into a rational block that was
set to trigger the accumulator to reset when the output value reached 2 7. The output of
the theta block was then converted from a value of 0 to 2z to a value of 0 to 2% in order
to be implemented in the rest of the code. The XILINX configuration used to produce

the theta value for the system is shown in Figure 6.
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Figure 6. Theta Software Design.

C. FRAME TRANSFORMATIONS

Since the controller used space vector modulation, it was necessary to convert the
feedback voltages into the qd frame. The value from the theta design was used in the
transformation blocks to convert the Vg, Vi, la, and I, feedback values produced by the
A to D converter to the synchronous frame values as shown in Figure 5. The voltage
values converted into the synchronous frame (V% and V°g) were then subtracted from the
set reference values and sent into the voltage PI control block. Similarly the current
values converted into the synchronous frame (I°; and 1°%5) were subtracted from the
reference currents produced by the voltage PI control block and sent to the current PlI
control block. The final frame conversion block took the new V¢ and V¢ values
produced by the current PI control block and converted them from the synchronous to the

stationary frame.

The equations used to build the abc to gde transformation blocks in the code were
derived from equations (2.1) and (2.2), which were taken from reference [8].

f, =E{fa cos(6)+ f, COS(@—Z—ﬁj-i- f cos[6’+2—ﬁﬂ (21)
3 3 3
f, =§{fa sin(6)+ f, sin(&—%)+ f, sin(6’+2?ﬂﬂ (2.2)

Using the fact that v, +v, +v, =0 and i, +i, +i, =0 in three phase configurations

allowed f; to be substituted in equations (2.1) and (2.2) yielding the following equations.

2 2z 2
f, :5{ f,cos(0)+ f, cos(@—?}r(— f, - fb)cos(<9+?ﬂ (2.3)
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2 . . 2 . 2r
f, =§[fasm(9)+ fbsm(e—?jﬂ—fa -~ fb)sm(9+?ﬂ (2.4)

These equations can be further simplified to yield

f, :g{ f, (cos(&)—cos(&+%])+ fb(cos(e—%[j—cos(ejtz?ﬂ)ﬂ (2.5)
f, :é{fa (sin(@)—sin(9+2?”jj+ f, (sin(@—%)—sin(6+2§jﬂ (2.6)

A final simplification using trigonometric identities yields the equations used to

design the transformation block for the currents in the software.
. 2. . -
Iy :§(Ia sm(6?+%)+ i, sm(@)) 2.7)
iy = %(—ia cos(@+%) —i, cos(e)] (2.8)

The XILINX block software that corresponds to equations (2.7) and (2.8) is

shown in Figure 7.

Delay1

—C
sin_theta

Figure 7. Current Transformation Block.

The line-to-line voltage transformations were derived by using the fact that

Vp=V,—V, and Vv, =Vv,—V,=V,—(-v,—V,) can be manipulated to produce
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\ :Evab +lvbc and v, :—lvab +lvbc which, when substituted in equations (2.7) and
3 3 3 3

a

(2.8) yields
2 . T . T . .
f, =ﬁ(2fabsm(0+§j+ fi. sm(6’+§j— fpsin(0)+ fbcsm(@)j (2.9)
i =2 of 0+Z |1 0+Z |+ f 0)- f 0)| (2.10
=350 . COS +§ — f,, cos +§ + f,, cos(8)—f, cos(@) | (2.10)
These equations can be simplified further to produce
2 . Vs . . V4 .
f=——| f |2sin|@+—=|-sin(@) |+ f |sin|O+—= |+sin(EO 211
“ 3ﬁ( ( ( 3] ( )] ( ( 3j ( )D .
— fao —Zcos(9+£j+cos(9) — f, cos(0+£j+cos(9) (2.12)
“o3/3L e 3 ° 3

A final simplification using trigonometric identities yields the equations used to

design the transformation block for the voltages in the software
v, :%(vab €os () +V,, sin(0+%n (2.13)

v, :é(vabsin(¢9)+vbc COS(GJF%D (2.14)

The XILINX block software that corresponds to equations (2.13) and (2.14) is

shown in Figure 8.

a
2 3ab)| X185
P b
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e "~ as . S EEaCD)
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UFix_8_0 )| F*165
»{b

Multl

Lpfa
ey FH165
b L—> a
Fix_16_15 Fix_17. 5 B4 Fix_16_5
Mult2 ? &4 >
vd_e
Fix_16_5

a
. e AddSub1 oMultL

,thheta cos ::jzj: L Mult3
SineCosinel ;(:9
»D
Figure 8. Voltage Transformation Block.
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The transformation block that transforms the voltage values from the synchronous

to the stationary frame was designed based on the following equation from reference [8].

{ﬂ _
Vds

cos(6,)
—sin(6,) cos(6,)

sin(6,)

I]

(2.15)

The XILINX representation of equation (2.15) is shown in Figure 9.
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Software for V4 PI Control Block.

All four PI controllers had the same basic design which consisted of the reference

value being subtracted by the corresponding measured value. That value was then sent to

two separate gain operators to produce a product and an integrator value. The integrator
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value was sent into an accumulator, and the accumulated value was summed with the
product value to produce the appropriate reference output. The controller software had a
PI control block with the same design for each of the four variables: Vg, Vq, Ig, la. The
basic design of all four PI controllers is represented in this section by the Vq PI control

block shown in Figure 10.
E. SPACE VECTOR MODULATION

The controller design selected for this thesis was based on space vector
modulation to produce the output gate signals for each controller that would modulate the
six IGBTSs in the three phase rectifier based on the input of the qd voltage values in the
stationary qd frame presented in Figure 9. The qd values in the stationary frame were
converted to Polar coordinates before being sent into the space vector modulation block.
The XILINX block configuration that produced the space vector modulation for this

controller is presented in Figure 11.
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The input magnitude and the theta value, that was converted into a binary value,

was sent into a sample and hold block that was then sent into an MCode block that
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selected the appropriate sector of the space vector modulation hexagon. The sector
selection outputs were then sent into the modulation block. The additional XILINX
blocks in the figure produce the duty cycles that are also sent into the modulation block
along with the ramp input. The inputs to the modulation block were sent through
numerous arithmetic and logic blocks that produced the three gate signals for the
controller [9]. The full set of notes that provide a detailed explanation of the algorithms
that describe how the sample and hold block and the modulation block work together
with the rest of the design is located in Appendix A.

F. ANALOG TO DIGITAL CONVERTER

The A to D converter for the controller was designed with XILINX blocks to take
in the voltage and current feedback signals from the SIMULINK blocks that provided a
mathematical representation of real world hardware. While the XILINX blocks were
used to create the software code that could be loaded on an FPGA, the SIMULINK
blocks were used to represent real world components outside of an FPGA in order to
create accurate simulations prior to loading the software on a board. The SIMULINK
blocks were also used as pulse generators to simulate the internal clocks on a board. In
order for the XILINX blocks to read the SIMULINK blocks in the software the
SIMULINK blocks must be sent into one of the yellow input blocks seen in Figure 12.
The data into an input block could be a Boolean, signed (2’s complement), or unsigned
data. However, the input block had to assign one FPGA pin for every data bit. The grey
output blocks represent outputs that did not have an FPGA output pin assigned and were
used to send information back to the SIMULINK blocks. Once the SIMULINK data was
read into the XINLINX blocks of the A to D converter, the timing from the simulated
clock values were used to select the two current and two voltage values that were then
sent into the controller. The multiplication blocks prior to the output pins were used to
offset any scaling of the feedback signals from the hardware when the software was
actually loaded on the FPGA.
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Figure 12, XILINX A to D Converter Design.

G. SIMULATED HARDWARE DESIGN

The software design in SIMULINK that was used to mathematically simulate the
external hardware of the VSI in order to create a computer generated output prior to
loading the software on the FPGA is shown in Figure 13. The modulated gate signals
from the control were sent into this block and mathematically manipulated to produce an
output that simulated the gate signals going through a LC filter, with the capacitors in a
wye configuration and an LR load in a wye configuration. The values of the simulated

filter inductors and capacitors were 350 #zH and 60 uF respectively. The values of the

simulated load resistors were 20Q2. Since the hardware design for this research only

used a resistive load, the inductor values in the simulated load were set at 100 4H to

account for the inductance in the wires of the hardware.
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H. CHIPSCOPE

A Chipscope interface block was also a previously designed piece of software that
was incorporated into the research design but was not a direct component of the
controller. The Chipscope interface block was taken directly from a buck converter lab
for EC4150 at NPS [10] and is shown in Figure 14. The software was chosen because it
was designed to provide two switches that could be controlled through the Chipscope
program from XILINX that was loaded on the computer. The Chipscope interface
software was implemented as a remote computer based switch to help prevent
unnecessary physical contact with the boards that might have lead to unintentional
damage to the hardware. The XILINX simulation multiplexer blocks also allowed the
Chipscope interface block to operate the step function that was used for the switching
event in the computer simulations as well as the computer switches in the experimental
tests. One other feature provided by the software in the Chipscope interface block was
the ability to read four internal signals and display them in Chipscope. This feature was

also taken from the buck converter lab software to provide the ability to take internal
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measurements of the software without the need to send them to external pins on the
FPGA. The code that was used in the black box block of the software is listed in

Appendix F.

double simulation of VIO
from Chipscopel
Bool

5

)
load_on 1
ind2
800
Black Box T on | D)
Regen_on
onvel ul

—>
—>
Convert2 Simulation Multiplexerl
Concat

simulation of f VIO
from Chipscope

-

12 0

Figure 14. Chipscope Interface Block [10].

. CHAPTER SUMMARY

This chapter presented the XILINX block components of the basic controller
design that were used to implement the redundant controller architecture in this research.
The controller was a closed loop designed with an outer voltage PI control loop and an
inner current Pl control loop. The controller used space vector modulation to modulate
its output gate signals. This chapter also showed the way in which SIMULINK and
XILINX blocks were used to develop computer simulations that could then be directly
transferred to an FPGA for experimental testing. The next chapter presents the hardware

configuration that was set up to conduct the experimental testing of the software design.
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1. HARDWARE DESIGN

The next step in the research process was to select hardware components that
could be used to conduct real world experiments in order to collect experimental data
from the redundant controller design to compare with computer simulated results. The
hardware in this project consisted of two Virtex 1l development kit FPGAs connected to
customized interface cards, a three phase rectifier, an LC filter, and a resistive load. The
Virtex Il FPGA contained the design software that produced the six modulated output
signals that went into the six step inverter. The interface card, which included an A/D
converter and digital 1/0 ports, allowed the FPGA to connect with the six step three phase
rectifier from SEMIKRON. The rectifier then connected to an LC filter with the
capacitors in a Delta configuration in order to run a load of three resistors in a Delta
configuration. Measurements of Vqp, Vi, ia, and i, were then fed back into the FPGA via
the interface card in order to produce a voltage source inverter with a closed loop control
system as shown in Figure 15.

Two XILINX Virtex Il FPGAs

Two Custom interface
cards Voltage Feedback (v,)

Voltage Feedback (v,,)

Current Feedback (i,)

(A/D converters and
digital 1/O) | Current|Feedback (i)

badatetetcdc ke

F1E ’ﬂ%}ﬁ G

Tf

RL RL

R

A B- C
Kz Kz
1L,
Figure 15. Diagram of the Hardware Configuration.
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Two Virtex Il FPGA boards were used in this research to design the hardware
configuration used to collect the experimental data. The boards had been previously
purchased and used for other NPS research because of the versatility provided in the
development and verification of FPGA designs. The Virtex Il provided an Indexed
Sequential Processor (ISP) Programmable Read Only Memory (PROM) along with a
Joint Test Action Group (JTAG) connector that allowed direct configuration of the FPGA
from the computer [11]. A high level block diagram of the FPGA from the Virtex Il
Reference Board User’s Guide is shown in Figure 16.

Using the FPGA to design the controller instead of solid state components
provided greater flexibility in making changes to the design along with the ability to load
different versions of the design without creating additional boards. The primary board
held the software for the primary controller and the switching unit, and the second board
held the software for the secondary controller only. The primary FPGA was also used to
send the outputs of the selected controller to the three phase rectifier through the
switching software located on the primary FPGA. All of the information passed from the
primary to the secondary controller had to be sent externally through the interface cards
connected to the FPGAs. Likewise the output values of the secondary controller had to
be sent back into the primary board externally to the switching unit so it could be passed
to the rectifier when a fault occurred. The three modulated outputs from the primary
controller and the fault signal from the primary controller were the only information
signals passed to the switching unit internally during the experiment. If the design were
to be put into practical use, the switching unit should be loaded on its own separate board
to avoid a potential failure in the switching unit in the event that the primary controller
failure somehow caused damage to the board. However, due to resource limitations only
two boards were available, and having the switching unit on the primary board did not
have an effect on the measurements of the switching disturbance for the purposes of the
experimental research. The product description for the Virtex Il board used in the
experiments is located in Appendix B. A picture of the Virtex Il board used for the

experiments is shown in Figure 17.
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Figure 17. Virtex-11 Development Kit.

B. CUSTOMIZED INTERFACE BOARD

The interface board was specifically designed with 1/0 ports, an A to D converter,
and four voltage level shifters to interact with the Virtex Il board configuration used in
this thesis and to provide physical connections between the FPGAs and the other
hardware devices in the design. The interface boards connected directly to the pins of the
FPGAs. Jumper connections were also connected between the two boards to send the 5V
supply from the interface to the Virtex Il boards. The interface board connected to the
Virtex 1l development kit with the 5V supply connected is shown in Figure 18. The
layout of the interface board that was created using the PCB123 design software package

is shown in Appendix C.
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Figure 18. Customized Interface Board Connected to the FPGA.

Six BNC connections on the primary interface board were used to send out the
gate signals from the selected controller to the six step three phase rectifier. Another
BNC connector on the primary board was used to send out the fault signal to a BNC port
on the secondary controller. Two more BNC connections on the primary board were
used to send the theta synchronization signal and the serialized initial conditions out to
the secondary board. That data was then sent into the secondary board through two
resistor inputs. On the secondary interface board three BNC connections were used to
send the gate signals of the secondary controller out to the primary board. Those signals
were then sent into three input resistor connections on the primary board in order to be

read by the switching unit in the primary FPGA.

25



The four feedback values from the VSI were sent into four additional BNC ports
on each board that connected to the A to D converter to complete the closed control loop
for each controller. Each controller also had a BNC that was used as an emergency
manual shut off switch. The primary and secondary boards connected together are shown
in Figure 19. This figure also shows the XILINX parallel cable connected to the
primary board that was used to load the software through the JTAG port on the FPGA
directly from the computer. The specific 1/0O ports and their corresponding FPGA pin
connections in the software are covered in detail in the following chapters.

Figure 19. The Primary and Secondary Controller Boards Connected
Together.
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C. THREE PHASE RECTIFIER

Figure 20. Three Phase Rectifier plus Inverter with Brake Chopper from
SEMIKRON.

The SEMITEACH-IGBT used as the six step three phase inverter for the
hardware configuration in this thesis is shown in Figure 20. The SEMITEACH is a
multi-function IGBT converter with a brake chopper/rectifier. It is built with a
transparent casing that allowed the operator to view the internal components. It also had
several safety features which made it an ideal piece of equipment to be used in the
laboratory environment [12]. Further technical specification for the SEMITEACH-IGBT
is listed in Appendix D. The six gate signal outputs from the primary controller were
sent into the six BNC connectors on the side of the SEMITEACH box that corresponded
to the positive and negative gates for the three phases of the rectifier. A three phase AC
power supply was applied to box through the three banana connectors on top of the box
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centered toward the front. Finally the three banana connectors centered in the top of the
box produced the output of the three phase rectifier that was sent to the LC filter and on
to the resistive load.

D. LOAD

Figure 21. LC Filter and Resistive Load Setup.

The output of the three phase rectifier was sent out to three inductors connected to
a delta configuration of capacitors to produce an LC filter. The value of the filter
capacitors and the load resistors were adjusted to be equal to the computer simulated

values. The inductors and capacitors of the LC filter had a value of 350 4H and 20 uF

respectively. The LC filter limited the current and voltage in the time domain to produce
a low pass filter that filtered out the modulation energy of the output and allowed the 100
Hz sine wave through before going into the load. Three 60Q resistors in a delta
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configuration were then used for the VSI load and the line to line voltage output across
the resistors was measured for the experimental results. The LC filter and resistive load

configuration in the hardware are shown in Figure 21.

E. HARDAWARE SETUP

Figure 22. The Complete Hardware Design.

The components described in the preceding sections were finally implemented in
the hardware design shown in Figure 22. This picture of the overall hardware design
shows the hardware components described in the previous sections as well as the AC
power supply for the three phase rectifier block, the DC power supply for the interface
board, and the voltage and current probes used to provide the feedback signals for the
closed loop design. Using this hardware configuration designed around the two FPGAS
provided the ability to develop and test multiple software solutions for the redundant
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architecture without making any major changes to the hardware components. This ability
saved both time and resources throughout the research and design process.

F. CHAPTER SUMMARY

This chapter described each of the hardware components used in the design to
collect experimental data. The ability to physically separate the primary and the
secondary controllers was vital to the experiments in order to ensure true redundancy was
maintained in the design. Without physically separating the two controllers it would not
have been possible to adequately demonstrate the data transfer necessary to eliminate the
disturbance of the VSI output during the switching event. The next chapter describes the
software design that was developed to achieve the first objective of the research which
was to enable the VSI to switch from a primary controller to a secondary controller when
a fault was detected. Each aspect of the redundant design is identified along with the
FPGA and interface board pins assigned to the inputs and outputs of the controllers. The

simulated and experimental results are then presented to confirm the design operated

properly.
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IV. INDEPENDENT REDUNDANT CONTROLLER
ARCHITECTURE

This chapter discusses the original redundant controller design developed to
achieve the first objective of this research to have a VSI with an independently operating
redundant controller that would sense a fault in the primary controller and switch. The
software used to create the redundant controller architecture consisted of a primary and a
secondary controller block, an A to D converter block that read the feedback from the
system, and a switching unit subsystem that switched between controllers when a fault
was sensed. SIMULINK blocks were used to simulate the behavior of the three phase
rectifier, LC filter, and resistive load in order to produce predictive simulation results
prior to loading the software on the FPGAs. Finally, a Chipscope interface block was
added to the software design which was able to set the fault signal during the computer
simulations. The purpose for this additional software was to allow the operator to trigger
the fault and shut off switches through the computer during the experimental tests rather
than using physical switches.

In order to design the VSI with a redundant controller architecture the basic
controller design discussed in Chapter 1l was given several modifications to enable it to
sense input data as well as pass output data to the other elements of the design. The
ability of the primary controller to communicate with the secondary controller and the
switching unit were the first steps that had to be achieved. In the initial stages of the
research one design was developed for both controllers which made it possible for the
same code to be loaded on each board. However, as the design evolved to incorporate the
passing of more data between the controllers it was not possible to keep the software

exactly the same, and two separate configurations had to be developed.

The simulation software for the basic redundant controller design, which included
the XILINX blocks that generated the code for the FPGA and the SIMULINK blocks that
simulated the behavior of the external elements in the hardware, is shown in Figure 23.
This configuration was used to collect simulated results in order to predict how the

redundant controller architecture would behave in the real world system. The results
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obtained from this configuration gave reasonable estimates of the actual system’s
behavior and provided a high degree of confidence and predictability when moving to the

real world experiments.

eeeeeeee

YYVVYYY

"® Regen_on

Chipscope interface

Gateway Outl

Controller 1
LC filter, LR load

Gateway Out2

Gateway Out3

>

Figure 23. XILINX Model of the Redundant Controller System with Both
Controllers Operating Independently.

The following sections address the issues considered during the initial stages of
the design process and how the basic software components discussed in Chapter Il were
modified for this research. They also describe the new components that were developed
and how all of the software elements interacted to create the redundant controller

architecture.
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A. FAULT SIGNAL

Although fault detection was an element of this research, it was not necessary to
design the system to detect multiple types of specific faults in the controller in order to
measure the disturbance of the output during the switching event. Therefore, the
software was designed to simply read a high/low fault signal in the primary controller.
The fault signal had the same input and output port assignments on both boards, and the
input port on the interface card that read the fault signal was designed as an inverter.
Therefore, when value of the fault signal is mentioned in this thesis it refers to the value
of the signal being sent into the primary FPGA which is the inverted value of the manual

switch signal going into the interface card.

The input port for the fault signal on the primary board was set up as a physical
switch that could be used manually, and the input pin on the secondary interface card
simply read the output from the primary interface card and inverted it before sending the
signal into the secondary FPGA. An emergency shut off switch was designed into both
boards to provide an extra level of protection for the equipment. The shut off switch was
routed to the same BNC port on both interface cards. On the primary controller board the
manual shut off switch was designed to turn off all of the signals being sent to the
switches in the switching unit, preventing any gate signals from going into the three
phase rectifier. The manual shut off switch on the primary controller board was also
designed to send a signal that would reset the four Pl accumulators of the primary
controller. The manual shut off switch on the secondary controller board was designed to
independently reset the four Pl accumulators of the secondary controller. The physical
input and output pins used for the fault signal and manual shut off switch on both boards
are listed in Table 1.
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Fault Signals Vertex Il (FPGA Pins) Interface (BNC Ports)

Input C4 U2
Output T5 U46
Emergency Shut Off D1 Ul

Table 1.  Fault Signal and Shut Off Switch Ports.

Additional XILINX blocks were included to enable the design to use Chipscope
to perform the switching event. This addition was used to help reduce the risk of
inadvertently damaging the boards by using the physical switches when collecting the
experimental data. The software used for the Chipscope switch was the same software
described in Chapter Il, which provided the ability to use switches and to take internal
readings of the system without using additional FPGA pins. Due to the fact that
Chipscope could only be used through the XILINX parallel cable, the internal switches in
the software could only be used on one board at a time. Therefore, the switching event

was controlled through the primary controller board during the experimental testing.
1. Primary Controller

The fault signal on the primary controller could either be detected by the signal on
the manual input switch or by the internal switch created by the Chipscope software. The
fault signal was sent into the primary controller’s four Pl control blocks, the switching
unit, and the secondary controller’s four PI control blocks. When the fault signal was
low the accumulators in the primary controller were enabled and the switching unit
selected the primary controller’s gate signals to be sent into the three phase rectifier. The
fault signal was also designed to be sent from the primary interface card to the secondary
interface card, via a BNC cable, where it would be inverted to a high signal and sent into
the secondary FPGA. Therefore, the system would continue to run with the primary
controller until the fault signal in the primary FPGA went high indicating a failure of the

primary controller.
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2. Secondary Controller

Prior to a failure of the primary controller, the inverted fault signal going into the
secondary FPGA kept the accumulators of the four PI controllers set to zero. This
ensured the secondary controller would not start at some arbitrary value when it took
over. When a fault was detected in the primary controller, the secondary PI controller’s
accumulators were enabled, and the switching unit selected the gate signals of the
secondary controller to be sent into the three phase rectifier. The output pins of the three
gate signals that were sent into the switching unit from the secondary controller are listed
in Table 2.

Secondary Gate Signals Vertex Il (FPGA Pins) Interface (BNC Ports)
SA N6 u47
SB P6 u48
SC P7 u49
Table 2.  Gate Signal Outputs for the Secondary Controller.

The ability of the secondary controller to accurately receive the fault signal from
the primary controller and pass the output gate signals back to a switching unit was the
first design requirement in creating the redundant controller architecture. In order to
achieve this goal, the next step was to design a switching unit that could receive the
output data from both controllers and reliably switch from the primary to the secondary
controller. The next section discusses the switching unit design and how it managed the

outputs of the two controllers to complete the systems redundant architecture.
B. SWITCHING UNIT

The switching unit design that determined which controller would be used by the
voltage source inverter is shown in Figure 24. The switching unit was designed to read
the gate signals from both controllers, the fault signal from the primary controller and the
emergency shut off signal. The negative value of each gate signal input was created

making a total of six signals from the primary and six signals from the secondary
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controller. Each gate signal from the primary and secondary controller were then sent to
an AND logic gate along with the emergency shut off signal. The subsequent six values
of each controller were sent to six individual switches that were designed to switch from
the primary to the secondary controller values when the fault signal went high. The
switching block then sent out the positive and negative values of the selected controller to
the selected FPGA pins.
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The values from the switching unit were sent from the FPGA pins to the BNC
ports on the interface card which were then connected to the three phase rectifier. The

gate signal values from the software and the corresponding FPGA and BNC connections
are listed in Table 3.
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Switching Unit Outputs FPGA Pins BNC Ports
A+ C16 uU38
A- D16 U39
B+ E13 u40
B- H13 u41
C+ H14 U4z
C- H15 U43

Table 3.  Gate Signal Ports on the Primary Board.

At this point the system was able to sense a fault in the primary controller and
switch to a secondary controller without turning the system off which achieved the first

research objective.
C. SOFTWARE ADDITIONS FOR EXPERIMENTAL TESTING

This section describes the software components that were not necessary for the
redundant controller operations but were added to assist in the experimental
measurements. A switching control subsystem was used in the experimental testing of
the design to enable multiple measurements of a specific configuration to be properly
compared. The switching events for the computer simulated results were able to be
controlled by a simple step function that could be selected to switch at the same set time
for multiple measurements. However, the switching event for the experimental results
was triggered by an actual fault switch that was controlled by the operator. A switching
event initiated at random by an operator was not capable of occurring at the same point of
the output twice. Therefore, a second requirement, based on the value of theta was added
to ensure that the fault signal that would trigger the switching event would always occur
at the same point of the VSI output. This block of code was only necessary to collect the
experimental data that need to be compared, and would not be included in any practical

design.
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The XILINX block design of the switching control software is shown in Figure
25. While the fault switch signal was low, the register block remained enabled which
allow a low fault signal to be sent out. When the fault switch was activated by the
operator, a high signal was sent into one input of the AND gate. The high fault switch
also sent a low signal into one of the OR gate inputs. At this point the AND gate was still
sending out a low signal, and the OR gate was still sending out a high signal to enable the
register block. Therefore, the fault output was still low. The high fault output signal
would not occur until a predetermined value of theta was also achieved. When both the
fault switch and the theta value were selected, a high signal was sent out to the register
block which passed the high signal. The high fault output signal was then sent back as a
low signal into the second OR gate input which turned off the enable port and latched the
high signal into the register. Latching the fault sign prevented the theta value from
affecting the switching event any further.
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Figure 25. Switching Control Software for Experimental Results.

Another modification made to both the primary and the secondary controller at
this stage of the research was a theta test point that would send a signal to an output pin
on each board. The addition to the theta software block that produced the test signal that
was collected during the experimental testing is shown in Figure 26. This test point was
designed into the software to provide additional experimental data on the behavior of the

theta values produced on each board. The test pin software was designed to send out a

signal that would produce a rising edge when the value of theta reached %7[ and a falling

edge when the theta accumulator reached 2 # and reset to 0.
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Figure 26. Theta Test Pin.

The FPGA pin used for the theta test output and its corresponding interface board
connection for both controllers is listed in Table 4.

Theta Test Pins FPGA Pins Interface Connection

Test Output H4 uUs

Table 4. Theta Test Pins.

D. SIMULATED RESULTS

Three measurements of a single phase of the simulated output when the VSI
switched between two independently operating controllers with no synchronization is
shown in Figure 27. Only one phase is present on the graph in order to better see the
disturbance produced by not having any synchronization between the primary and
secondary controllers. Since both controllers were operating in a single computer
program the theta offset in the three measurements had to be added to the secondary
controller manually to try and accurately simulate two physically separated clocks
counting at slightly different rates. The graph shows a period of about 0.08 seconds
between the switching event and the secondary controller achieving steady state
operations. It is important to note that this disturbance time could be longer or shorter
depending on the gain values chosen for the system. The disturbance in the VSI output

shown in the simulated results indicated the two main sources of the disturbance came
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from the phase shift due to the internal theta values in each controller and the transit time
required for the secondary controller to achieve steady state after the switching event

occurred.
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Figure 27. Three Simulated VSI Outputs with Random Theta Values for the
Secondary Controller with the Switching Event at 0.05 seconds.

E. EXPERIMENTAL RESULTS

The experimental results of the redundant system at this stage of development are
shown in Figure 28. The graph displays three separate measurements on top of each
other which exhibit three separate, random phase shifts in the output of the VSI. The
graph also shows the major disturbance in the amplitude of the output while the
secondary controller’s accumulators achieved steady state. The behavior of the

experimental VSI inverter output was very similar to the predicted behavior produced by
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the simulated outputs. The similarities of these two outputs provided a high level of
confidence in the predictability of the computer simulation software used in this research.

Both the simulated and experimental results show a significant disturbance in the
amplitude and phase of the output during the switching event. These results illustrated
the need to develop the design further in order to produce an output that would meet

military standards [1].
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Figure 28. Three Single Phase Experimental VSI Output Measurements with
No Synchronization of the Primary and Secondary Controllers’ Theta
Values and the Switching Event at 0.05 seconds.

Further confirmation that the phase shift in the output was due to the internal theta
values of the two controllers drifting apart over time was provided by collecting
experimental data from the theta test pins in the controllers. The outputs of the theta test
pins on the primary and secondary boards at a random point of operation are shown in
Figure 29. The solid blue and broken red graphs represent the primary and secondary
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controllers’ theta values respectively. The rising edge of these graphs indicate when the

theta value of each controller reached gz and the falling edge indicates when the theta

values reached 2 # and reset. The clear difference in these experimental results helped to
verify the computer simulations predictions that the phase shift during the switching
event was being caused by the variation in the two independently operating theta values

of the controllers.
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Figure 29. Theta Pulses of the Two Controllers without Synchronization.

F. CHAPTER SUMMARY

This chapter provided a break down of the software design modifications made to
both the primary and secondary controllers in order to produce a VSI with operating
standby redundant controller architecture were both controllers operated independently of
each other. The simulated behavior of the redundant controller architecture presented in

42



this chapter made it possible to develop the software design more thoroughly prior to
implementing it in the hardware. The ability to see the computer generated behavior of
the entire system was extremely beneficial in troubleshooting the software and guiding
the design development. The computer simulations of this design also provided
information with which to compare the experimental measurements of the software when
it was loaded in the FPGAs. The next chapter discusses the design issues involved in
eliminating the random phase shift of the VSI output during the switching event, and the
solution that was implemented to achieve the second objective of this thesis.
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V. PHASE SYNCHRONIZED REDUNDANT ARCHITECTURE

This chapter presents the software solution developed to eliminate the random
phase shift in the VSI output that was produced during the switching event with two
independently operating controllers. The modifications to the software of the primary
and secondary controllers in order to synchronize the theta values are explained. The
computer simulations of the VSI output are then presented which predict the behavior of
the design. Finally the experimental results are displayed to confirm the real world

operation of the new configuration.
A. THETA SYNCHRONIZATIONS

Once the system was able to effectively switch from the primary to the secondary
controller it was necessary to attempt to minimize the disturbance of the system output
during the switching event. Theta synchronization was the first step in controlling the
output of the secondary controller when the fault occurred. Since the controllers were
loaded on separate boards to help ensure greater reliability of the system during a failure
of the primary controller, the theta values of each controller would slowly drift apart over
time without some mechanism to keep them aligned. This difference in the internal theta
value of the two controllers would cause the output of the VSI to have a random phase
shift when the system switched from the primary to the secondary controller. Another
issue that had to be considered was the fact that any information passed from one FPGA

board to another would require the use of one output pin per bit of data.

Since the theta value for each controller was designed to count from 0 to 2z and
then reset the accumulator back to zero, the theta values could remain synchronized by
simply having a single pulse that would reset both theta accumulators at the same time. It
was also necessary to ensure that the synchronization between the primary and secondary
values of theta would not continue after a fault was detected in order to maintain true
redundancy. This single pulse method was considered the best solution because it only
required a single bit to pass the information needed to keep the theta value of both

controllers synchronized.
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1. Primary Controller

The modification that was made in the theta block of the primary controller
enabled it to pass the reset signal to the secondary controller before the fault was detected
and stop passing the signal after the detection of the fault. This modification is shown in
Figure 30. The reset pulse is sent to an AND logic gate with the inverted fault signal.
Prior to a failure, the inverted fault signal remains high and the AND gate will pass the
reset signal to the secondary controller keeping it synchronized with the primary
controller theta value. Once a failure in the primary controller is detected, the inverted
fault signal will go low which will prevent the reset pulse from the primary controller

from continuing to pass to the secondary controller’s theta block.
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Figure 30. Theta Synchronization Software for Primary Controller.

2. Secondary Controller

The design modifications to the secondary controller’s theta block are shown in
Figure 31. The secondary controller was designed to accept the reset pulse from the
primary controller as well as continue to operate on its own once the pulse from the
primary controller stopped being sent. This was accomplished by bringing the reset
signal from the primary controller into an OR logic gate with the secondary controllers
reset signal. Since the synchronization pulse was delivered at the end of every 2z cycle,

any difference in the theta values of the primary and secondary controllers during that
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time would have been negligible. Therefore the reset signals from the primary controller
and the secondary controller would occur at the same time. The OR logic gate in the
design allows the theta software to continue to reset after the synchronization signal is

discontinued due to the detection of a fault in the primary controller.
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Figure 31. Theta Synchronization Software for Secondary Controller.

The input and output pins used to synchronize the theta values of the primary and
secondary controllers are listed in Table 5. The FPGA pin on the primary board sent the
pulse signal to the primary interface board’s BNC connection listed in the table. The
primary interface board then sent the signal out to the secondary interface board’s BNC
connection, which was then sent into the FPGA input pin on the secondary board listed in
the table.

Synchronization pins FPGA Pins Interface Connection
Primary output L5 u44
Secondary input K3 R51

Table 5.  Theta Synchronization Connections.

B. SIMULATED RESULTS

The theta offsets that were added to the secondary controller for the computer
simulations in Chapter IV were taken out, which automatically synchronized the theta
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values of the two controllers in the computer simulation. The simulated result of what
the VSI output should look like without any phase shift during the switching event is
shown in Figure 32. The fact that the theta values of the two controllers were identical
because the simulation was run on one computer made it difficult to determine if the theta
synchronization software was working. However, the simulated result still provided an
accurate output with which to compare the experimental results.

Vbc Theta Sync
100

80

60

40

20| -

20 -1

Line-to-Line Voltage
o

-40

60

w ]

-100
0

0.15

Time(sec)

Figure 32. Simulated VSI Output with the Theta Values Synchronized and the
Switching Event at 0.05 seconds.

C. EXPERIMENTAL RESULTS

The experimental tests in this section confirmed that the theta synchronization
software added to the design eliminated the phase shift to the VSI output during the
switching event. The three experimental results of the VSI output for the redundant
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controller system with the theta synchronization pulse being sent from the primary to the

secondary board are shown in Figure 33. The switching control software was also

implemented for this experimental test in order to properly show the ability of the VSI to

maintain the same output phase during three separate failures of the primary controller.
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Three Single Phase Experimental VVSI Output Measurements with
Theta Synchronized and the Switching Event at 0.05 seconds.

The behavior of all three experimental VSI inverter outputs was very similar to

the predicted behavior produced by the computer simulation. Although the disturbance

in the amplitude was still present during the switching event, the random phase shift

element of the disturbance had been removed by adding the theta synchronization pulse.

Although this still did not meet the military standards for voltage disturbance in a power

system [1], the ability to predict the disturbance in the output was a significant

improvement over the previous design presented in Chapter IV.
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A reevaluation of the theta test pins with the theta synchronization software
implemented showed that the theta values of the two controllers remained identical prior
to the switching event. The output of the theta test pins prior to the primary controller
failing is shown in Figure 34. The solid blue line and the broken red line indicate the

primary and secondary controller respectively. The figure shows that the rising edge,
which indicates when the theta values are %7:, and the falling edge, which indicates

when the theta values are 2z were identical in both controllers before the primary

controller failed.
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Figure 34. Theta Pulses of the Two Controllers with Synchronization Prior to
the Fault.

The output of the theta test pins twenty seconds after the primary controller failed
is shown in Figure 35. It is apparent from the two graphs that the theta values ceased to
be synchronized once the secondary controller took over, and the two values slowly
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began to drift apart after the fault occurred. This experimental result also confirmed that
the feature in the software that helped to ensure that the secondary controller would not
be potentially corrupted by continuing to be connected to the primary controller after the

failure was functioning properly.
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Figure 35. Theta Pulses of the Two Controllers with Synchronization Twenty

Seconds After the Fault.

D. CHAPTER SUMMARY

This chapter discussed the software design modifications made to the theta
software in the primary and secondary controllers to eliminate the random phase shift in
the VSI output during the switching event. The simulated results of the design predicted
the pulse from the primary controller’s theta software would synchronize the theta values
of the two controllers at the end of every 2 7 cycle. Multiple experimental measurements

provided confirmation that the theta synchronization software was able to eliminate the
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phase shift in the output. Additional confirmation that the theta synchronization was
discontinued after the fault was detected was also provided from the theta test pins
located on both boards. This experimental information helped to confirm that the
redundancy of the system was being maintained. The next chapter discusses the design
issues involved in passing initial condition values to the four PI control blocks from the
primary controller to the four Pl control blocks of the secondary controller to eliminate
the drop in the amplitude of the VSI output during the switching event.
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VI. FULLY SYNCHRONIZED REDUNDANT ARCHITECTURE

The final goal of the research was to design the redundant controller architecture
so that the secondary controller would come online at the same place the primary
controller failed. The final XILINX model that achieved all of the objectives of this
research is shown in Figure 36.
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Figure 36. XILINX Model of the Redundant Controller Design with the Theta
Synchronization and the Integrator Values of the Primary Controller
Passed.

Until this point in the design it was necessary to keep the secondary controller’s
integrator values set to zero to prevent it from coming online at some random point and

potentially damaging the VSI. However, keeping the integrator values at zero prior to
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sensing a fault in the system meant that the VVSI output would have to start at zero and
work its way back up to steady state. Although the loss of power would be brief, it would
not be an acceptable design to meet military standards [1]. This problem could be solved
by sending the four integrator values from the primary controller to the corresponding
integrators in the secondary controller to be used as a starting point when it came online.
However, the process of sending data between two physically independent FPGAs added
an extra degree of difficulty to that approach. In order to send a binary value out of the
FPGA there had to be one FPGA pin assigned for each bit of the value. Therefore, if four
twelve bit words were to be sent, forty-eight output pins on the FPGA would need to be
used to send each bit out. Since this would not have been a feasible solution given the

resources used in this research, an alternate way of passing the data had to be developed.
A. INITIAL CONDITIONS TRANSFER SOFTWARE

The solution that was implemented to achieve the objective of passing the initial
conditions from the primary to the secondary controller was to create additional code that
would serialize each of the twelve bit integrator values from the primary controller and
concatenate them into a string of forty-eight single bits. By doing this the data was able
to be sent using a single output pin on the primary FPGA and a single input pin on the
secondary FPGA. Additional code also had to be developed for the secondary controller
to deserialize the string of data back into four separate values that could be sent to the

appropriate integrators.

The serialization portion of the software was designed to take in four binary
values of any size, convert them to twelve bit values with specified binary points, and
reinterpret them into unsigned twelve bit values. The four unsigned twelve bit values
were then sent into a XILINX Mcode block where MATLAB code selected the four
values to be sent out to another Mcode block that serialized the bits into a Manchester
format. The final serialized output consisted of a start bit, a forty-eight bit string, and a
stop bit. This string was then sent into the deserializaion portion of the software were the
bits were reassembled back into four individual values. The Manchester coding scheme

used in the software interpreted a rising edge in the middle of a bit as a zero and a falling
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edge as a one. The serialization code is listed in Appendix F. Once the serial to parallel
software was shown to work reliably in the software, the four PI blocks in both the

primary and secondary controllers were modified to send and receive the data properly.
1. Primary Controller

The only change made to the primary controller was the addition of the
serialization portion of the software. No modifications to the Pl control blocks were
needed to be made other than to send the integrator values to the serialization block. The
primary controller sent out all four integrator values into the serialization portion of the
software. The four values were serialized into a string of forty-eight bits and then sent

out a single bit output gate.
2. Secondary Controller

The secondary controller received and decoded the serialized data from the
primary controller using the deserialization portion of the software. The serialized bits
were then broken back out into four twelve bit unsigned values. Finally the four values
were reinterpreted into 2’s complement values with the appropriate binary points. The
appropriate integral value was then read by the corresponding PI1 control blocks through a
register latch until a fault occurred. When the secondary controller sensed the fault
signal, it took the last inputs sent to the four integrators and latched the values to be used
as the initial conditions for the secondary controller. The modifications made to the V¢,
integrator are shown in Figure 37. The same design was used for all four integrators of
the secondary controller to achieve the initial conditions transfer.
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Figure 37. Initial Condition Configuration for the Secondary Integrators.

The output pin used to send out the serialized data from the primary controller and

the input pin used to receive the data on the secondary controller are listed in Table 6.

Serialization pins FPGA Pins Interface Connection
Primary controller output T6 u45
Secondary controller input C8 R54

Table 6. Serialization Pins.

B. SIMULATED RESULTS

1. Simulated Test of Serialization Software

In order to test the code, computer simulations were conducted to demonstrate
that the serialization software could take in four distinct twelve bit values, send out one
bit at a time, and reassemble the bits back into the same four bit values. The Manchester
output of the serialization portion of the software with the four constant input values of
one, two, three, and four are shown in Figure 38. Each of the input constants were set as
sixteen bit 2’s complement values with binary point values of three. The serialization
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software then took each of the constant values and recast them as twelve bit values with
varying binary points assigned to work in the actual software design. The binary points
for the one through four values were eight, eight, two, and six respectively. The new
twelve bit values were reinterpreted into unsigned twelve bit values with no binary point
before being serialized and concatenated into a string of forty-eight bits. The four
individual binary values and the subsequent forty-eight bit string are shown in equation
(6.2).

Constant One = 000100000000

Constant Two = 001000000000

Constant Three = 000000001100 (6.1)
Constant Four = 000100000000

Serialized String = 000100000000001000000000000000001100000100000000

Serialized Data

1.2¢ -

0.8 -

0.6+ i

0.4 -

0.21 i

0.2+ -

L 1 1 1 1 L L 1 1 1
205 21 215 22 225 23 235 24 245 25 255

x 10

Figure 38. Serialized Data of Four Twelve Bit Constants plus a Start and a
Stop Bit.
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Using the Manchester decoding described in this chapter, the forty-eight bit string
of data in equation (6.1) can be shown to correspond directly to the serialized string of
data, minus the start and stop bit, in Figure 38.

To test the deserialization portion of the software, and to provide further
confirmation that the serialization software would work in the redundant architecture
design, a computer simulation was run which displayed the four initial conditions of the
primary controller prior to being serialized and the four deserialized outputs in the
secondary controller. The graphical representations of these four signals before and after
the serialization software were then compared. The software was run for 50ms while the
primary controller was moving toward steady state. This simulation represented roughly
one thousand serialized strings of the four twelve bit words which provided a high degree

of confidence that the software was not producing any bit errors.

The simulated results of the four initial condition values being sent into the
serialization block of the primary controller and the four output values of the
deserialization block in the secondary controller are shown in Figure 39. The simulated
results of the graphs indicate the values sent from the primary controller were accurately

interpreted by the secondary controller without any bit errors.
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Figure 39. (@) The four integrator values of the primary controller prior to

being serialized by the software. (b) The four output values of the
deserialization block in the secondary controller.

2. Simulated Output Results

The simulated graph of a single phase of the output when the theta values were
synchronized, and the serialized integrator values of the primary controller were passed
to the secondary controller is shown in Figure 40. The same output with all three phases
represented is shown in Figure 41. In these simulations the step function was set to occur
at 0.05 seconds, and the graphs were zoomed in on the switching event to try and detect

any minor disturbances in the sine wave. The simulated results indicated that passing the
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integrator values from the primary to the secondary controller through the serialization
software and latching the values in the secondary controller when a fault was detected
would eliminate the remaining disturbance in the software. The absence of any
disturbance in the computer simulated output indicated that this was a viable solution for

the redundant architecture that would meet military standards [1].
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Figure 40. Simulated Single Phase Voltage Output with Theta Synchronized,
Initial Conditions Passed, and the Switching Event at 0.05 seconds.
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Figure 41. Simulated Three Phase Voltage Output with Theta Synchronized,
Initial Conditions Passed, and the Switching Event at 0.05 seconds.

C. EXPERIMENTAL RESULTS

1. Experimental Test of Serialization Software

The first experimental test that was developed was to demonstrate that the
serialized data from the primary board was actually being sent to the secondary board.
To provide experimental confirmation of this, the serialization block of the software was
loaded on the primary board with the same four constant values discussed in section B as
its four input values and the output pin assigned to the FPGA from Table 6. The
secondary board was then loaded with the deserialization block of the software along
with another serialization block. This configuration on the secondary board would take
the bit string from the primary board and deserialize the data back into four constant

values. Those four constant values were then sent back into the serialization block on the
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secondary board and sent out of the board as a second string of forty-eight bits with a
start and stop bit. If the data was being passed accurately from the primary to the
secondary controller, and the serialization and deserialization blocks of the software were
operating properly on the two FPGAs, the output string from the secondary controller
should have been identical to the output string from the primary controller with roughly a

50 us delay. The two individual bit strings from the primary and secondary boards are
shown in Figure 42. These two graphs show approximately a 55 xs delay present in the

output of the secondary board due to the time it took for the data string from the primary

board to be deserialized into four constant values and then serialized back into a second

data string.
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Figure 42. Serialized Data of Four Constants from the Primary and Secondary

boards.

The time delay was removed and the two graphs were laid on top of each other to
make it easier to see whether or not the two bit streams were the same in Figure 43. The
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four constant values that were serialized and sent out of the primary board were identical
to the four constant values that were serialized and sent out of the secondary board.
Further analysis of the graph showed that the serialized data from both of the boards
corresponded to the forty-eight bit string in equation (6.1). These results experimentally
confirmed the simulated serialization results as well as the ability of a data string to be
passed from one physical board to another.

Serialization of Four Constants
7 T T T T T

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Time(sec) x 10°

Figure 43. The Serialized Output from the Secondary Controller
Superimposed on the Output from the Primary Controller

The limitations of operating Chipscope simultaneously on two separate boards
prevented experimental tests from being taken similar to the simulations presented in
Figure 39. It was not possible to collect data from both boards simultaneously because
Chipscope could only read one board at a time through the XILINX parallel cable. The
oscilloscope was also not able to be used to measure the actual integrator values because
it would have required forty-eight additional test pins from each board to pass all of the
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information out of the FPGAs. This inability to read the internal integrator values were
why the bit transfer test presented in this section was developed. This bit transfer test
along with the output results of the switching event in the next section provided sufficient
data that the integrator values were being transferred from the primary to the secondary

board correctly.

2. Experimental Output Results
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Figure 44. Three Single Phase Experimental Output Measurements with

Theta Synchronized, Initial Conditions Passed, and the Switching
Event at 0.05 seconds.

Three experimental measurements of a single phase of the VSI output when both
the theta synchronization pulse and the initial conditions were being passed from the
primary to the secondary boards are shown in Figure 44. For these experimental tests the
switching control software that was used in the previous chapters was implemented in

order to take multiple measurements with the switching event at the same point of the
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output. The switching event for the experimental results occurred at 0.05 seconds on the
graph. All of the experimental measurements showed no disturbance in the VSI output
during the switching event.

Measurement of Each Phase

Line-to-Line Voltage

OO | | | | |
0.04 0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06

Time(sec)

Figure 45. Experimental Measurements of the Three Phases of the VSI
Output with Theta Synchronized, Initial Conditions Passed, and the
Switching Event at 0.05 seconds.

The oscilloscope used for the experimental results was not able to take readings of
all three phases of the output at the same time. However, since the switching event was
set to trigger at the same theta point for each measurement, it was possible to take
separate measurements of each phase and place them on the same graph in order to show
the effects of the switching event on each phase of the output. The experimental results of
all three phases of the output are shown in Figure 45. Despite the fact that the
measurements had significant distortion in the voltage output, the measurements of all
three phases showed no disturbance due to the switching event. Both the simulated and

65



experimental output results provided a high level of confidence in the ability of this
design to switch from a primary to a secondary controller when a fault occurred with
virtually no disturbance to the output of the VSI.
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Figure 46. Three Single Phase Experimental VVSI Output Measurements with
Faults at random theta values and the Switching Event at 0.05 seconds.

All of the experimental results presented so far showed the switching event at a
forced position of the voltage output in order to lay multiple measurements on top of each
other. Since an actual redundant system would not want to force the fault signal to wait
for a second condition before it switched, it was necessary to take some output
measurements without the switching control software installed. Forcing the switching to
occur at the same theta value every time could have also hidden possible disturbances
when the system switched at an undefined theta value. In order to test this idea, three
experimental measurements were taken with the switching control software block

removed in order to observe the affects of the switching event on the voltage output at
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random points. The results of the three measurements with the switching event triggered
at 0.05 seconds are shown in Figure 46. Although the distortion was still present in all of
the measurements, there did not seem to be any significant disturbance in the outputs.
The only minor disturbance at the 0.05 second switching event was in the red and blue
graphs of the figure. However, the disturbance was so minor that it was difficult to
determine if it was disturbance due to the switching or just normal distortion of the

output.
D. CHAPTER SUMMARY

This chapter discussed the solution developed to be able to pass the four
integrator values of the primary controller to the secondary controller using a single
output pin on the primary controller and single input pin on the secondary controller. The
addition of communications software that enabled the four integrator values of the
primary controller to be serialized, sent through a signal bit output on the FPGA to the
secondary controller, and deserialized into the four individual values to be sent to the four
Pl control block in the secondary controller was explained. The modifications to the PlI
control blocks in the secondary controller that enabled it to read the values from the
primary controller and latch the last value sent when a fault was triggered was also
discussed in this chapter. Simulation and experimental test results on the serialization
software were presented to demonstrate its effectiveness in passing data accurately.
Simulated and experimental test results of the final VSI output were also presented,
which indicated that passing the integrator values from the primary to the secondary
controller eliminated the remaining amplitude disturbance caused by the switching event.
A degree of distortion on the output waves was also observed which could have produced
some minor disturbances during certain switching events. The next chapter presents the
final conclusions of this thesis along with the original contributions made by this

research. Possible follow on research that could be pursed in the future is also discussed.
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VIlI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis demonstrated the potential for the improved reliability of a VSI to be
achieved through the implementation of operating standby redundant controller
architecture. The VSI used in this thesis was designed using computer simulations that
were then validated through experimental results. The closed loop space vector
modulation controllers selected for this research were designed so that when a high/low
fault was detected the system would automatically switch from the primary to the
secondary controller. The secondary controller was designed to operate physically
independent of the primary controller to reduce the risk of damage when a fault occurred,
thereby providing true redundancy. After confirming that the initial redundant design
worked, modifications to the software were made to allow a theta synchronization pulse
from the primary to the secondary controller. This addition to the design eliminated the
random phase disturbance in the VSI output during the switching event. The final step in
the redundant design was the development of serialization software that would allow the
four integrator values of the primary controller to be passed to the secondary controller
through a single FPGA bit. Modifying the redundant software to pass the integrator
values from the primary to the secondary controller to act as initial conditions when a
fault occurred produced negligible disturbance in the VSI output during the switching

event.

The experimental measurements of the output when both the theta pulse and the
initial conditions were passed showed some distortion to the signal which might have
caused some minor disturbance during some of the switching events. This distortion was
most likely due to the selection of the PI gains and the hardware values. Creating a more
stable system by selecting ideal hardware and gain values could help reduce the
uncertainty of whether the minor disturbance during certain switching events was due to
the distortion in the output signal or an issue with the data transfer from the primary to
the secondary controller.
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B. RECOMMENDATIONS

There are still some questions to be answered before this design could be put into
any practical system. The ability of a VSI to switch to a redundant controller without any
significant output disturbance provides the basis for many follow on research topics.

Some possible future topics are discussed in the following sections.
1. Reduction of the Distortion in the VSI

When the VSI output of the experimental results was viewed closely, there was
significant distortion due to the gain values and noise in the system. This distortion could
be reduced by determining the ideal gain and hardware values for the system. Designing
a filter for the harmonic distortion could also improve the results which would help
determine if there were any minor random disturbances during the switching event that

were being hidden by the distortion of the output.
2. Additional Redundant Components

Demonstrating that it is possible for a VSI to switch to a redundant controller
without any disturbance in its output provides the basis to implement more redundant
components of the architecture presented in Chapter | of this thesis. Follow-on research
could implement this redundant controller design in a VSI with a four-switch pole

inverter topology.
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APPENDIX A: SPACE VECTOR MODULATION NOTES

Digital Implementation of Naturally Sampled Space Vector Modulation
Alexander L. Julian, Asst. Prof.
Elec. & Comp Eng. Dept. Naval Postgraduate School
833 Dyer Road, Room 437, Monterey, CA 93943

ajulian@nps.edu

Abstract-This paper describes the digital implementation of
naturally sampled space vector modulation in an FPGA.
Using an FPGA stead of a DSP or microcontroller allows
the discrete algorithm to be executed in parallel mstead of
m series, increasing the algorithm speed considerably. This
allows the reference signal to be sampled many times
during any single switching period, converging on the
performance of naturally sampled continuous signals. The
phase delay of the output signal compared to the reference
signal is dramatically reduced by oversampling the
reference signal.

L Introduction

Analog naturally sampled pulse width modulation (PWM)
allows the modulation duty cycle to be updated right up to
the moment when the switches comumutate. A digital
representation of this PWM technique converges on the
analog signal as the sampling rate increases. When space
vector modulation is used then a transformation relating
three PWM signals to qdo variables is necessary. A digital
implementation must update the switching duty cycles as
often as possible during a PWM period. Additionally, once
a switching event has occurred protection features in the
modulator must ensure that extra switching events do not
occur. Additional switching increases losses and can lead
to overheating of the transistor.

Digital implementation of naturally sampled PWM for a
single phase using sine-triangle carrier based techniques is
presented in [3]. This paper demonstrates digital
mmplementation of space vector modulation. The placement
of the zero vector is extensively analyzed in [4] however
oversampling the reference is not addressed here either. A
thorough review of modulation strategies is presented in
[5] Space vector modulation is described wherein the duty
cycles are updated at twice the switching frequency but the
effect of oversampling the reference is not discussed.
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Figure 1: Voltage source inverter
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Figure 2: Space vector modulation hexagon

II. Space Vector Modulation Review

The three phase output of the voltage source mverter (VSI)
shown in Figure 1 is controlled by modulating the six
transistors. The space vector hexagon in Figure 2 maps the
q and d axis voltages for each of the eight possible
switching states. The zero axis voltage is not mapped in
Figure 2 but could be included if the plot was three
dimensional. The eight states form a hexagon with two
zero states mapped to the center of the hexagon. A
transformation of the output voltages into the qdo frame is
defined in Eqs. 1 and 2 [1].

1 -1
17 3
_Y B
K=3 0577 Eq-1
111
22 2
Yq Van
Vd|=K;| Ybn Eq.2
Yo Ven

The choice of the neutral reference point in Figure 1, v, is
arbitrary and only affects the zero sequence voltage (viy).
For the case where v, is connected to the p bus and w, and
v, are connected to the n bus ((p,n,n) in Figure 2) the qdo
voltages are:

- 2Vye

4 vy [l 3

Vd|=— Eg|1|=[ © Eq. 3
o -1 Ve



Eq. 3 also defines the length of the radii forming the corners
of the hexagon, 2/3 Vy,. For the case where v, and w, is
connected to the p bus and v, is connected to the n bus
((p.p,n) in Figure 2) the qdo voltages are:

\.'

Jde
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v
vV 1 -V
de de
Vd |= K.|:1:|: Eq. 4
Yo LR 43
6

The two states defined by Eqs. 3 and 4 form the sides of
Sector I. When the reference voltage is in this sector then
these two states and the zero states are used to produce an
output voltage that, in the average, equals the reference
voltage.

Let T, be the total switching period, for example 100 ps
when the switching frequency is 10 kHz. Let T; and T,
represent the amount of time spent on states (p,n,n) and

(p.p.n) respectively.  The wveetors V; and V; are
proportional to the time spent on each state:
Ty 2V Ty 2V
. 1 Vde o 24V de
Vi—r, 3 Eefa Vy-p 3 Eq 5b

The law of sines [2] can be used to find the duty cycles for
cach state:
\.'

2
———- Eq. 6
Substituting Eqs. 5a and 5b into Eq. 6 vields solutions for
the time spent on each state:

+*

-

V43 .
T, = J-Ts-sm(ﬁﬂo-ﬂ)

T Eq. 7
Ve
&
vz
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Since the time spent on each state cannot exceed the total
switching period then the modulation index is between zero
and one:

\."

3 w " d
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de \]’3
The amount of time spent on the zero state is the time
remaining in the period:

To=TsTy-Ty

Eq. 9

Eq. 10

II. FPGA Implementation

After the time to spend on each state is computed then the
order in which the states are applied to the load must be
determined. This is the most significant difference between
space vector modulation and pulse width modulation. In
pulse width modulation a reference is typically compared to
a triangle wave and the state transitions occur when the two
signals cross. In space vector modulation there are
numerous ways in which to apply the switching states to the
load. When choosing a switching pattern consideration
should be given to:
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»  Minimizing switching events
»  Minimizing distortion
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Figure 3: Switching Pattern for each sector (switching
state on top, time duration on the bottom for each sector
description)

The FPGA implementation presented here accomplishes the
pattern shown in Figure 3. Of particular note is that the
order of the states used in each sector changes so that there
is only one transistor switching at each state transition. The
state associated with timer T; is the first non-zero state in
Sectors I, IIT & V. The state associated with tumer T; is the
first non-zero state in Sectors II, IV & VI. This factor is
accounted for n the gate signal generation logic (Figure 5)
by switching the timers used to identify the point in the
modulation period. The distinet times in the modulation
period are identified with the letters a to e in Figure 3. The
synthesis of the logic that determines the time within the

modulation period is shown in Figure 5.

The input to the modulator is the reference voltage in
Cartesian coordinates. The Cartesian coordinates are used
since outer control loops typically operate on the q and d
axis voltages to generate a reference for control. The
Cartesian to polar transformation is accomplished using a
cordic algorithim, provided by XILINX inside the System
Generator toolbox.

For the implementation demonstrated in this paper the ramp
counter (Figure 4 & Figure 5) increments every clock cycle.
The oscillator runs at 24 MHz and the switching frequency
is 10 kHz so the ramp counter resets after counting up to
2400. In Figure 4 the sector of the reference voltage is
identified by comparing the angle, 8, to the boundaries of
the hexagon which are 07, 60°, 120°, 180°, 240° & 300°.



IV. Digital Natural Sampling Modulation
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Fig. M: Oversampled reference signal when 05=1, 2
and 4.

Fig. M shows the sampled reference signal that is used to
compute the PWM timer values i the fgpa. The duty
cycles, Ty, Ty and T, are updated at the same mstant that
the reference signals are resampled.

The sample and hold circuit of Figure 4 allows the digital
modulation to behave like a naturally sampled system.
Typical modulation updates the sampled signal when the
ramp counter resets to zero. Double update modulation
would update the sampled signals when the ramp counter is
at zero and ¥4 of the final count value. As the update rate of
the sampled signals increases the discrete system converges
on the behaviour of a continuous system provided that the
entire discrete algorithm is being updated at a very high
rate. Using an FPGA instead of a DSP or microcontroller
allows the discrete algorithm to be executed in parallel
mmstead of in series, increasing the algorithm speed
considerably. In the example presented here, the timers are
recomputed 16 times each PWM period. A typical DSP
could not achieve this algorithm update rate.

— .
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— (0]
21 06 =) gTZ 0| @
] = = Q| =
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£ E 3 o %
5! ® =,
° 8 "1z To)3 L=
c Nl s
S 3
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Figure 4: Space Vector Modulation Algorithim

73

T
=
2
i
Ty

a|gel dn-yom]
sEuBis Aen

Figure 5: Gate Signal Generation Block (see Figure 4)

When the sample and hold circuit in Figure 4 updates the
timer values much faster than the ramp counter period then
it is possible for the gate signals to switch more than once
each switching period if the reference is changing very
quickly. This can lead to transistor overheating and failure.
Rather than excessively bandlimit the reference signals a
lockout state machine is used to protect the transistors. The
gate signals are sent to a state machine, shown i Figure 6,
that allows only one switching event every period. When
the ramp counter equals zero then the output of the state
machine equals the input, which is the gate signal from
Figure 5. This occurs during the zero state, nni. When the
nput gate signal, x, transitions from high to low then the
state machine output, y, remains fixed until the end of the
ramp counter period. Referring to Figure 3, this event
oceurs at the end of modulation period ¢, d or e and the gate
signal remains unchanged for the rest of the period.

Figure 6: Gate Signal State Machine (input is x, output
isy)

V. Algorithm size in FPGA
Together Figure 4, Figure 5 and Figure 6 describe the
diserete algorithm embedded in an FPGA. The target
FPGA used for this research is the Virtex-TT XC2V1000.
This chip has 1 million gates. The space vector modulation
algorithm and a sine wave for v, and v4* uses an equivalent
gate count of 250,000 gates, according to the ISE
Foundation mapping report, when designed using System
Generator and complied using ISE Foundation. The
reference voltages are 12 bits. The lookup sine table is 210
12 bit words. The math was accomplished with at least 12
bits of numerical precision throughout.

VI. Experimental Results
These experimental results measure the voltage gain and
phase versus frequency as a function of the modulation
index when the sample and hold rate of the timers is varied.
The PWM frequency used in these experiments is 10 kHz.



The gain that is measured is from the output gate signals to
the reference, v," (Fig. 4). The reference is sent out through
a D/A converter operating at 93.75 kHz. The analog signal
is then measured with a differential voltage probe that has
an RC mput filter. The gate signals, Vy,, are measured by a
differential voltage probe with an identical RC filter on its
mput. This creates 2 sinusoidal signals that can be
compared. Finally, the RMS values of the signals and the
phase between them is measured using functions in the
‘measure menu’ of a Tektronix TDS3014B oscilloscope.
Figure 7 shows that the gain is not greatly affected by the
oversampling of the reference signals however some
additional gain is realized by oversampling (the gain is 0.88
instead of 0.83). The impact of oversampling is more
significant in the phase of the output voltage compared to
the reference, as shown in Figure 8. For a sinusoidal
reference at 2 kHz the phase of the output lags by almost
45° at 2 kHz when oversampling is not used. When the
reference signal is oversampled 16 times each PWM period
then this phase lag is reduced to 7°. Figures 9 and 10 show
the measured voltage gain and phase when the modulation
index 1s 0.75 mstead of one.

The ewrve when OS=2, which is widely used (double
update PWM), falls between OS=1 and 0S=4 in Figs. 7-10.
The final paper will include a comparison of the spectra for
different oversampling rates. This information could not be
mcluded due the digest size limitation.

0s=1

L i L H H H i L H L
0 200 &0 600 800 W00 120 1400 1600 1800 2000
Hz

Figure 7: Voltage gain for different oversampling rates
(08) when the modulation index (m:) is one.

Wout wit. Vel

N S S S S S SR S
0 20 40 G0 80 1000 1200 1400 1600 1800 2000
Hz

Figure 3: Phase difference for different oversampling
rates (OS) when miis one.
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Figure 9: Voltage gain for different oversampling rates
(OS) when » is 0.75,

$p a0 @0 G0 80 1000 120 140 160 1600 20
Hz
Figure 10: Phase difference for different oversampling
rates (OS) when the modulation index () is 0.75.

VII. Conclusion

Embedding space vector modulation in an FPGA creates an
opportunity to oversample the reference signal. This digital
implementation of naturally sampled space vector
modulation significantly improves the wvoltage gain and
phase of the modulator compared to the reference signal.
This improvement can enhance the performance of wide
bandwidth voltage source mverters.
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APPENDIX B: VIRTEX Il FPGA

Product Brief
The Virtex-1l LC1000 Development Kit verifies platform FPGA design applications.

3
Features

Virtex-1l LC1000 Development Kit

W Easy to use development platform

W Based on the Xilinx® 1 M gate
Virtex-Il FPGA (XC2V1000)

W User /O expansion connectors

W Bank selectable reference voltage
and resistors to support multiple
11O standards

W Supports four clock inputs

W Two user clock outputs via
SMB connectors

W High performance 32 MB
DDR memory

B LVDS transmit and receive paorts

W Low cost and high flexibility

Applications

B General-purpose prototyping platform
W Digital signal processing
B Telecommunication and networking

B Video and wireless

Product
Description

The Virtex-Il LC1000 Development Kit
provides an easy to use development

platform for prototyping and verifying
Virtex-Il based designs. The Virtex-ll

designs with IP cores and customized
modules. The Virtex-Il family delivers

tion, wireless, networking, video, and
DSP applications. In addition to per-

family is a platform FPGA intended for
high performance, low to high-density

complete solutions for telecommunica-

formance and density, the Virtex-Il fami-
ly offers many supported /O standards,
external interfaces for PCI-X, QDR and
DDR, abundant memory resources and
on-chip multipliers, features that enable
FPGA designers to meet the design
requirements of next generation
telecommunication and networking
applications. The Virtex-|l reference
board employs the Xilinx 1 M gate
Virtex-Il (XC2V1000) device. The refer-
ence board's supporting devices work in
conjunction with the Xilinx Virtex-Il
FPGA to facilitate the prototype of high-
performance memeory and /O interfaces
such as differential signaling (LVDS) and
high-speed DDR memory interfaces.

Virtex-Il also includes a high perform-
ance and flexible digital clock manager
(DCM) with on-chip digital controlled
impedance (DCI) for source/load termi-
nations, a feature that enables FPGA
designers to perform high-level integra-
tion, reduce board level cost, and
improve overall system level reliability
and performance. The Virtex-ll reference
board provides the required test circuits
for exploring and testing these

functions. Advanced features such as
in-system programmability of the
on-board ISP PROM, complete high-
performance differential signaling
support, and the Reference Design
Center's pre-configured reference
designs make the kit a perfect solution
for FPGA and system designers who
need a quick, flexible and low cost
prototyping platform.

The Virtex-ll reference board utilizes the
Xilinx XC18V04 ISP PROM, allowing
FPGA designers to quickly download
revisions and verify design changes so
that they can meet the final system-
level design requirements. In addition to
the ISP PROM, the reference board pro-
vides a JTAG connector for direct con-
figuration of the Virtex-Il FPGA.

The Virtex-ll reference board is bundled
with VHDL and Verilog HDL reference
design examples to help FPGA designers
shorten development time and meet
time-to-market requirements.

Virtex-ll LC1000 Development Kit

Contact Memec: xilinx.info@memecdesign.com 888.488.4133 x212 (North America Only) or 858.314.8190 (Outside US)

75




(Virtex-11 LC1000
Development Kit

— User switches and user /O parts

Connector
Virtex-ll
- Sever-segment LED display FPGA L s
- VDS transmit and receive ports PROM

- Eight-bank Selectl/O voltage (VCCO)
settings (1.5, 1.8V, 2.5V and 50 Ohm
3.3 V options)

Resistors Optional
— Eight-bank reference volttage (VREF) B oo Regulator
settings (1.5V, 1.25V, 1.0V, 0.90 V e bl
and 0.75 V options) Voltage: » Regulat

A

Includes:
; u
W Virtex-Il Reference Board e «— > c}:ﬂﬂ’gﬂ
-1 M gate Virtex-ll FPGA device
(XC2V1000-4FG256C) User
-33V.25V,1.8Vand 1.5V on-board Clock e
voltage regulators =
- XC18v04 ISP PROM RS.232
- On-board 32 MB DDR memary Port
— RS-232 port > JTAG Port

A

. Generators il
— Bank reference resistors to support DCI [ =]
= Two oni-board clock sources and Lwo u:?[nk M;-S&P( Regulator 'E
i age > - > ort
SMB user clock inputs G“m?m e Voltage
- Twa user SMB clock output connectors Generator e
- JTAG part :
W AC-to-DC power supply adapter g
B Complete reference designs with source
code (VHDL and Verilog HDL) °
B Bundled software options —
A vy g
( )
Ordering Information Q
Americas Part # International Part # Q
Virtex-1l LC1000 Development Kit 8
Virtex-Il Development Kit DS-KIT-V2LC1000 DS-KIT-V2LC1000-EURO =
p
Kit with ISE Alliance and JTAG Cable DS-KIT-V2LC1000-ALl 3
Kit with ISE Foundation and JTAG Cable DS-KIT-V2LC1000-1SE =
“ J E ]
d
e
S
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APPENDIX C: CUSTOMIZED INTERFACE BOARD

A PCB 123 LAYOUT
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APPENDIX D: THREE PHASE RECTIFIER

Circuit lrms (A) Vae / Vdomax Types
B&CI 30 440 /750 SEMITEACH - IGBT
Symbol | Conditions Values | Units
lms no overload 30 A
IGBT - 4x SKM 50 GB 123D
Vees 1200 V
Veean | le= 50A, Vge= 15V, chip level; Ti= 25(125)°C 2,7(3,5) V
VGES +20 Vv
le Tease= 25 (80)°C 50 (40) A
SEMITRANS Stack" lem T case= 25 (80)°C; 1= Tms 100 (80) A
Rectifier - 1x SKD 51/14
. Vinmay) | without filter 3x480 \'
Three-phase rectifier + with filter 3x380 v
; A DC Capacitor bank - Electrolytic 2x 2200uF/400V
inverter with brake Cequi total equivalent capacitance 1100/800 |pF/V
chopper Vpemax | max. DC voltage applied to the capacitor bank 750 '
Driver - 4x SKHI 22
SEMITEACH - IGBT Power 0/15 v
SKM 50 GB 123D supply
Current
SKD 51 consump | max; per driver 16 mA
P3/250F tion
;I'hermal Normally Open type (NO) 71 “C
rip
Features
* Multi-function IGBT converter
* Transparent enclosure to allow
visualization of every part
* |P2x protection to minimize
safety hazards
* External banana/BNC type
connectors for all devices
* Integrated drive unit offering
short-circuit detection/cut-off,
power supply failure detection,
interlock of IGBTs + galvanic - — A — [ — 0 __ﬂ_,ﬂ = D-.__ﬂ =
isolation of the user o ¥EUVRUE YUY
* Forced-air cooled heatsink r-- HQ L
Typical Applications B8 itzh
» Education: One stack can "é T T T
L3 B 1§ ] b ]

simulate almost all existing
industrial applications:

3-phase inverter+brake chopper
Buck or boost converter

- Single phase inverter o ) a
- Single or 3-phase rectifier 202
308

1) Photo non-contractual

General dimensions

This technical information specifies semiconductor devices but promises no
characteristics. No warranty or guarantee expressed or implied is made regarding
B6U + B6CI + E1CIKF delivery, performance or suitability.
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APPENDIX E: XILINX BLOCK CODE

full_sync_simulation

Fle Edt bYisw Simulation Format Tools Help
D& B |e 4[] = fe Momal =] |
”
-
System
Generator
Stepd Lagical
Operatord
] Indh
{3 Run
] InZ
el In
W data e ponen_on
Il In&
Chipscope interface
Controllar 1
LC filter, LR load
G ateway Out?
Switching Unit
Controllar2
Ready [100% |odez )
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Oeld&

Fle Edt Yiew Smultion Format Tools

out

Counter

Constantl

Constant?

CONYSTn dizable memorny

Relational

Relationall

Constant2 MEMCSn

data_rate

Valtage gain,
VinsS00Ms=\isgnal
changed 16 Aug 05

surrent gain

lin/5H10=lsignal
Chtultl
*1A5DE.
z - CMultz

Ready

AD_state1

CurrentState
Inputs £D4
Qutputs| » In2
FRETDATAR Concat o
_ Delayz Mealy State Machine Delayd .
w1
Lanl Int
- £D3
n >
_ - Subsystem
- DATA_IN
o Delayi
o delay added for metastability AD_state
Mulliport
Smktch
()
inpin
100% ode?
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File Edit Yew Simulstion Format Tools Help
D& + » 06 Nomal - B & REBE®
fault, o
ault_in ca
D Lagical »s
manual_fault  Comz aby
— s mag b sA———— (1)
L . oy
2.15 Mult
5o
> atan )
fheta e
CORDIC ATAN Dalay sC
modulstion
A
thetat fault_out
theta XILINX
- o fault
ar
A L syne ot ]
theta_syne_out
Shut off .
Logical!
q_e_ref
Constant!
voef—1 woe
[ L e id_e_ret
wab »
vd_e d_e vq_s_ref
[ v _bo i_syno out o th
vbe sine vd_e_ret
i Constantz e r
B theta o .
cos id_syno out vd_s_ref
Pojicde_r
abot qde “oltage Pl controller
transform tiont
I-;sm
wq sync out
3 iz
12
wd syne out —
& N
I
Cunent P contral
] In1
{2
integratarwalues
It uas
| Indt
Subsystem1
Ready 100% odez
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Flle Edt Wiew Smulation Format Todls Help

O ES 4 [3 08 Mormal - B & REE®

»a
Angle_test_point =
bz
us
Relational2
omega*delta_T
Relational
and
o
vaa sync out
fault
Invertar? Logicalt
Ready 100% odez
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to qde transformation

Flle Edt Wiew Smulation Format Todls Help
DeE& T »oufos [Noma v B @RS
1
w_ab
z
w_be {2 1
z1ab;
Tl * Lufs
theta_ex. N pltheta sin Whult V&
AddSubz SineCosineZ ——Wa AddSub CMult
2%ab))
Constant
Multl
Lwla
ztat)
»o Lafs
-1 ore , o*b
S
Negate by Addsubi CMultt
=in o
theta Multz
SineCosined
» 3 )
sine
g D)
G0
Ready 100% odez
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roller2
File Edt View Simulation Farmat

Tools Help

O S i 13 I3 Nomal || OB i @) 8 REE®

B |2
o =
wq_e_ref a Chult! hatl iq_e_ref
a-b AddSubl
Z o —*P b
v_meas AddSub q
5t
CMult Accumulater

(D

rezet

>

syne out

Jeady

100%

odeZ

File Edit

Wiew Simulation  Format

hDeEd&

Tooks Help

»a
=+b
vd_g_re Chlultt
AddSub1
b
(] w7
=t
Chult Accumulator syne out
3
reset
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theta

Ready

File Edit Yiew Simulation Format Tools Help
held&E v 1t [ Namal ~||0H - B2 wEE®
O
la
»a
D ; 2%ab

theta_sx atb » Wult ath
® b b
o SineCasine2 2 addsub
171 ab)
2 b
Constant
o = Delay Multt
=a
zaby
gt Lyl
p" Mulz Ka
—»a
Negatet a0 AddSubi
I "
L -1] Mutz
s Delayl
Negate
sin_theta
oos_theta

x 1.186,
Chiult
* 1458 » 2
id_e
Chiult?
100% odez

JSubsystem4/PI controller2

Fle Edt Yew Smulation Format Tools Help

R,

reset

Ready

Aceumulater

DS = 4 bou g [Noma <] 3 Ag hEE®
%1 a
b
a Chultt bl
Lret o AddSubt
2y
I_meas AddSub b
q
st
Chult

syno out

100% lode2
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fSubsystem4/P| controller1

File Edit Wiew Simulation Format Tools  Help

O =E&S T » 06 Mormal - @ H@@

x1 a2
=
a Chultd
a-b Addsubi
b b
AddSub M 4 q
Chiult Aocumulator syme out
(ED,
reset
Ready 100%: ods2

imulation/.../Subsystem4/qde to qds transformation

Fle Edit Wew Smulaton Format Tools Help

O & 4 » 06 Nomal  w

B & BEE®

2
va_e 2 hat:
Bt Lol
z Mult a+h
e L rb s
2 AddSub
2 la Chiult
hultd
=) =1 o
sin_theta Talay —| <t
Megate (b Lb- a
Mulz Y PG
» wd_s
cos_theta bl
Delayt st AddSub1 R
g
Mult
Ready 100% odez
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ntroller, 1/modulation

Fle Edt Wiew Smulstion Format Iools Help

== = = 3 08 Mormal || B B Ek REE®

t W= rampzmod  Zh
Countert MCode2
T 7}
- » =
i — =
xo > 1 » =
Counterz - . = =
— = —
» =7
i . i
theta MCode
MCoded mag_s
mag
wqd_mag
sample and hold
Shout
uar
}—m]sel + g
Tttt a0 o sestort
a1 o sectorz =4
M P! sestord
) P Sectard SBut
W+ | —— il | Sectors ude
ath theta sin ] = 3B
e o 4@ M sy
1 b z
P Tt
AddSub SHi Muwct
Mult P Tiz
{theta sin L gl e Terz ot SCout
| € | zYam) 5 u4g
SineCosine L s z - I ramp
e Shitt
hhuitt
Constant2 Modulation
Seale by 2 to gt Ty/2 7
) a+h
S 2o
AddSubz
AddSub1

~
v

'Read 100% w
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File Edit VYiew Simulation Format Tools Help
o
DzEE =2 & =
-1
Constant (1 )—®B 7 -
Registar
rame Relational
E] = d
mag | -4
i mag_o
RegisterZ
Ready 100% odez
full_sync_simulation/.../modulation/Modulation,
Fle Edit View Smulation Format Tools Help
DS B|&o G oo [ome < o B & rRERE®

™
Tz
shift
La
D, s
T2 .
tow|
a
o | and
»lo > o
G 3 L=
Tz I
o —
and
» ——»{7)
(€ <3 58
amp »la -
0 >
> > 1 = .=
Sestor! =‘ ana » and
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» » i
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I
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)
Yy
E

ry

i

A 4
E
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:
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=11 ull_sync_simulation/.../Modulation/Subsystem1

File Edit Wwiew Simulation Format Tools Help

Oz E & 1 2 |.DE |Normal j @ i
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Cutl

Inwerter

Ready 100% odeZ
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" v |
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Register2 ™ sy
Ind \—] Lbd Ring Serial Comm Generater!
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2 q
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Registers
Ready 100% odez
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Fle Edt Wew Smulation Fgrmat Iodls Help
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izl full_sync_simulation/.../Encoder/Manchester Encoder

File Edit Yiew Simulation Format Tools Help
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full_sync_simulation/Controller 2 DlEEJ
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APPENDIX F: MATLAB CODE

A. INITIALIZATION FILE

Vdc=120;
dc=120;
Vref=50;

Kp_i=.01/3*(Vdc/sqrt(3));%current PI gain is amplified to account for
the SV modulation scaling

Ki_i1=6*(Vdc/sqrt(3)); %Current control loop gain

Kp_v=0.15;

Ki_v=2.5;

Vdc_comp=30;

Vcesat=2.3;
delaycount=1;
oversample=1; %1 4 work
fin=100;

tstop=40/60;

pulsect = 2400/oversample;
step_ct=1;

tstep = 40e-9*step_ct;
clkPeriod=tstep;
mod_index=.75;

Fmat =[0001;1120;2230;3300];
O0_mat = F_mat;
sl=2*pi*1;

s2=2*pi*5000;
s3=2*pi*50000;
alpha=.0002*sqrt(3)/Vvdc/2;

Lfa=350e-6;

Lfb=Lfa;

Lfc=Lfa;

Cf= 60e-6;
Cfa=Cf;Cfb=Cfa;Cfc=Cfb;
Loa=l1le-4;
Lob=Loa;Loc=Loa;
Roa=20;

Rob=Roa;

Roc=Roa;

Amat_indl
Bmat_indl

—-inv([Lfa -Lfb;Lfc Lfb+LFfc])*.005*[1 -1;1 2];
inv([Lfa -Lfb;Lfc Lfb+LFfc]);
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Cmat_indl = [1 0 ;01 ;-1 -1 17]; %lc = -la-1b
Dmat_indl = zeros(3,2);
Amat_caps = zeros(3);
Bmat _caps = [1/Cfa 0 0; O 1/Cfb 0; 0 O 1/Cfc];
Cmat_caps = eye(3);
Dmat_caps = zeros(3);
Amat_load = [-Roa/Loa 0 0; O -Rob/Lob 0; 0 O -Roc/Loc];
Bmat_load = [1/Loa 0 O0; O 1/Lob O ; 0 0 1/Loc];
Cmat_load = eye(3);
Dmat_load = zeros(3);
B. INTERNAL CODE

1. thetaconv2.m

function [y] = thetaconv(x)

gainl = xfFix({x1Signed,14,10},2*3.14);
gain2 = xfix({x1Signed,14,10},1/gainl)
ifT x<0
y=xFix({xlUnsigned, 10,0}, (x+gainl)*gain2*1024);
else
y=xFix({xlUnsigned, 10,0} ,x*gain2*1024);
end
2. overflow3.m

function [sectorl, sector2, sector3, sector4, sector5, sector6, z] =

overflow3(x)

%gain = xFix({xlUnsigned,10,7%},2.359296/3) ;%for 60 hz

gain = xfix({xlUnsigned,10,7},2.359296);%for 180 hz

Y%tempv=gain*x;

tempv=x;

if tempv<=171-1
sectorl=xFix({x1Boolean},1);
sector2=xfFix({xI1Boolean},0);
sector3=xfFix({xIBoolean},0);
sectord=xFix({x1Boolean},0);
sectorS5=xFix({x1Boolean},0);
sector6=xFix({xI1Boolean},0);
z=xFix({xlUnsigned, 10,0}, tempv);

elseif tempv<=2*171-1
sectorl=xFix({x1Boolean},0);
sector2=xfix({x1Boolean},1);
sector3=xFix({xI1Boolean},0);
sectord=xfFix({x1Boolean},0);
sector5=xfFix({xI1Boolean},0);
sector6=xFix({x1Boolean},0);
z=xFix({xlUnsigned, 10,0}, tempv-171);

elseif tempv<=3*171-1
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sectorl=xFix({x1Boolean},0);
sector2=xfFix({x1Boolean},0);
sector3=xFix({x1Boolean},1);
sectord=xFix({x1Boolean},0);
sectorS5=xFix({x1Boolean},0);
sector6=xfFix({xI1Boolean},0);
z=xFix({xlUnsigned, 10,0}, tempv-2*171);
elseif tempv<=4*171-1
sectorl=xFix({x1Boolean},0);
sector2=xfix({x1Boolean},0);
sector3=xfFix({xI1Boolean},0);
sector4=xfFix({x1Boolean},1);
sectorS5=xFix({x1Boolean},0);
sector6=xFix({x1Boolean},0);
z=xFix({xlUnsigned, 10,0}, tempv-3*171);
elseif tempv<=5*171-1
sectorl=xFix({xIBoolean},0);
sector2=xfFix({x1Boolean},0);
sector3=xFix({x1Boolean},0);
sectord=xFix({x1Boolean},0);
sectorS5=xfFix({x1Boolean},1);
sector6=xfFix({xIBoolean},0);
z=xFix({xlUnsigned, 10,0}, tempv-4*171);
else
sectorl=xfFix({x1Boolean},0);
sector2=xfFix({x1Boolean},0);
sector3=xfFix({xI1Boolean},0);
sectord=xFix({x1Boolean},0);
sector5=xFix({x1Boolean},0);
sector6=xfFix({x1Boolean},1);
z=xFix({xlUnsigned, 10,0}, tempv-5*171);
end

3. ramp2mod.m

function z = ramp2(x)
gain=xFix({xISigned,20,19},1/2400)
z=xFix({xI1Signed, 14,13},x*gain);

C. SERIALIZATION CODE

1. System Control Ring

function [Data out, Index, Iq_en, Id_en, Vg en, Vd en, Busy, Send,
Counter] =

SystemControllerRingComm(Vd_Data_in,ld Data_in,Vq_Data_in,lqg_Data_in,
Index_fb, Encoder_busy, Busy fb, Ig en fb, 1d en fb, Vq _en fb,vd en_ fbh,
Counter_fb);

COUNTER_INITIAL_VALUE=100; %%
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0/70/410/,0/410/~0/,0/~0/0/0/40/~0/0/~0/0/40/~0/,0/,0/~0/~0/~0,
U707070707070707070707070707070707070707070

%% Logic for Busy %%

0/70/410/,0/40/+0/40/0/40/0/40/~0/0/~0/0/~0/0/~,0/~0/~0/0/40,
0707070707070707070707070707070707070707070

it (Busy_fb==0) & (Encoder_busy==0) & (Counter_fb==0); %% Trigger
condition
Counter= xfix({xlUnsigned, 7, 0},COUNTER_INITIAL_VALUE);
Busy=xfix({xlUnsigned,1,0},1);
elseif (Busy fb==1) & (Index_fb==10) & (lqg_en_fb==0) & (Id_en_fTb==0) &
(Vg_en_fb==0) & (Vd_en_fb==0);
Counter=xfFix({xlUnsigned, 7, 0},Counter_fb-1);
Busy=xfix({xlUnsigned,1,0},0);
elseif (Busy_fb==1)
Counter= xFix({xlUnsigned, 7, 0},COUNTER_INITIAL VALUE);
Busy=xfix({xlUnsigned,1,0},1);
else
Counter=xFix({xlUnsigned, 7, 0},Counter_fb-1);
Busy=xfix({xlUnsigned,1,0},0);

end

0/40/410/70/410/+0/40/0/40/0/40/~0/0/~0/0/~0/~0/10/~0/~0/~0/~0,
0707070707070707070707070707070707070707070

%% Logic for Send %%

0/10/40/0/40/+0/40/~0/40/~0/40/~0/0/~0/20/~0/~0/~0/~0/~0/~0/+0,
0707070707070707070707070707070707070707070

it (Busy_fb==0) & (Encoder_busy==0) & (Counter_fb==0); %% Trigger
condition
Send=xFix({xlUnsigned,1,0},1);
elseif (Encoder_busy==1); %% Disable if encoder is busy
Send=xFix({xlUnsigned,1,0},0);
elseif (Busy_fb==1) & (Index_fb==11) & (lg_en_fb==0) & (ld_en_fTb==0) &
(Vg_en_fb==0) & (Vd_en_fb==0);
Send=xFix({xlUnsigned,1,0},1); %% End Case
elseif (Busy_ fb==1);
Send=xFix({xlUnsigned,1,0},1);
else
Send=xFix({xlUnsigned,1,0},0);

end

0/70/410/20/410/+0/,0/~0/0/0/0/40/10/40/~0/,0/~0/,0/~0/0/~0/40/0,
0707070707070707070707070707070770707070707070

%% Logic for Index %%

0/70/410/+0/40/+0/40/~0/40/~0/0/~0/20/~0/~0/40/~0/40/~0/40/~0/+0/A0,
070707070707070707070707070707070707070707070

if (Busy_fb==0) & (Encoder_busy==0) & (Counter_fb==0); %% Trigger
condition
Index=xfix({xlUnsigned,4,0},11);
elseif (Busy_ fb==0)
Index=xfix({xlUnsigned,4,0},0);
elseif (Encoder_busy==1)
Index=xfix({xlUnsigned, 4,0}, Index_fb);
elseif (Index fb>0) & (Encoder_busy==0) %% Decrement
Index=xfix({xlUnsigned, 4,0}, Index_ fb-1);
elseif (Index_fb==0)
Index=xfix({xlUnsigned,4,0},11);
else
Index=xfix({xlUnsigned,4,0},0);

end
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0/40/410/0/40/0/40/0/40/0/0/~0/0/~0/0/~10/0/40/~0/0/0/40/~0/0/~0/0/~0/40,
0707070707070707070707070707070707070707070707070707070

%% Logic for Ig_en %%

%%9%6%6%%%6%6%%%6%%%%6%%% %6%%% %% %% %%

if (Busy_fb==0) & (Encoder_busy==0) & (Counter_fb==0) %%trigger Case
Ig_en=xfix({xlUnsigned,1,0},1);

elseif (Busy_ fb==0)
1g_en=xfix({xlUnsigned,1,0},0);

elseif (Index_fb>0) & (l1q_en_fb==1)
1q_en=xfix({xlUnsigned,1,0},1);

elseif (Index fb==0) & (lg_en_fb==1) & (Encoder_busy==0)
1g_en=xfix({xlUnsigned,1,0},0);

elseif (Index fb==0) & (lIg_en_fb==1) & (Encoder_busy==1)
1g_en=xfix({xlUnsigned,1,0},1);

else
Ig_en=xfix({xlUnsigned,1,0},0);

end

96%%%%%6%%%%%%%%%%%%%%%%%%%%%
%% Logic for Vq_en %%

0/70/40/70/40/0/40/~0/40/~0/40/~0/0/~0/0/~0/~0/~0/+0/40/~0/40/~0/40/~0/+0/A0,

it (Busy_ftb==0);
Vg_en=xfix({xlUnsigned,1,0},0);

elseif (Index_fb==0) & (Encoder_busy==0) & (lg_en_Ffb==1)%% Start Vg_en
Vg_en=xFix({xlUnsigned,1,0},1);

elseif (Index fb>0) & (Vgq_en fb==1); %% the rest > 0
Vg_en=xFix({xlUnsigned,1,0},1);

elseif (Index_fb==0) & (Encoder_busy==1) & (Vg_en_*Ffb==1) %% last case
Vg_en=xfix({xlUnsigned,1,0},1);

else
Vg_en=xfFix({xlUnsigned,1,0},0);

end

0/70/410/+0/40/~0/40/~0/40/~0/40/~0/20/~0/20/~0/~0/410/~0/40/~0/420/~0/~0/A0,
0707070707070707070707070707070707070707070707070

%% Logic for Id_en %%

96%%%%%%%%%%%%%%%%%%%%%%%%

it (Busy_fb==0);
Id_en=xfix({xlUnsigned,1,0},0);

elseif (Index fb==0) & (Encoder_busy==0) & (Vg_en_fb==1)%% Start Id_en
1d_en=xfix({xlUnsigned,1,0},1);

elseif (Index_fb>0) & (ld_en_fb==1); %% the rest > 0
Id_en=xfix({xlUnsigned,1,0},1);

elseif (Index fb==0) & (Encoder_busy==1) & (ld_en_fb==1) %% last case
Id_en=xfix({xlUnsigned,1,0},1);

else
1d_en=xfix({xlUnsigned,1,0},0);

end

9%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Vd_en %%

0/40/410/+0/40/~0/40/~0/40/~0/40/~0/20/~0/20/~0/~0/4,0/~0/40/~0/420/~0/40/A0,
0707070707070707070707070707070707070707070707070

it (Busy_ fb==0);
Vd_en=xfix({xlUnsigned,1,0},0);

elseif (Index_fb==0) & (Encoder_busy==0) & (ld_en_Ffb==1)%% Start Vd_en
Vd_en=xfix({xlUnsigned,1,0},1);

elseif (Index fb>0) & (Vd_en fb==1); %% the rest > 0
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Vd_en=xfix({xlUnsigned,1,0},1);

elseif (Index fb==0) & (Encoder_busy==1) & (Vd_en_fb==1) %% last case
Vd_en=xfix({xlUnsigned,1,0},1);

else
Vd_en=xfix({xlUnsigned,1,0},0);

end

0/,0/410/,0/40/0/40/0/0/0/40/~0/0/~0/0/410/0/40/~0/0/0/0/0/0/~0/0/~0/40,
070707070%70707070707070707070707070%7077070770707070707070

%% Logic for Data out %%

0/40/40/20/40/0/40/~0/40/~0/0/~0/20/~0/+0/~10/~0/40/~0/40/~0/420/~0/20/~,0/0/~0/+0,
0707070707070707070707070707070707070707070707070707070

if (Busy fb==0) %% Start bit
Data out=xFix({xlUnsigned,1,0},0);
elseif(Busy_ fb==1)
it (Ig_en_fb==1)
if (Index_fb == 11)
Data_out =
xFix({xlUnsigned,1,0},xl_slice(lg _Data_in,11,11));
elseif (Index_fb == 10)
Data_out =
xFix({xlUnsigned,1,0},xl_slice(lq _Data_in,10,10));
elseif (Index _fb == 9)
Data out = xFix({xlUnsigned,1,0},xl _slice(lq Data in,9,9));
elseif (Index_fb == 8)
Data_out = xFix({xlUnsigned,1,0},xl_slice(lg_Data_in,8,8));
elseif (Index fb == 7)
Data out = xFix({xlUnsigned,1,0},x1 _slice(lq Data in,7,7));
elseif (Index_fb == 6)
Data_out = xFix({xlUnsigned,1,0},x1_slice(lq_Data in,6,6));
elseif (Index_fb == 5)
Data out = xFix({xlUnsigned,1,0},xl _slice(lq Data in,5,5));
elseif (Index _fb == 4)
Data out = xFix({xlUnsigned,1,0},xl _slice(lq Data in,4,4));
elseif (Index_fb == 3)
Data_out = xFix({xlUnsigned,1,0},xl_slice(lg_Data_in,3,3));
elseif (Index _fb == 2)
Data out = xFix({xlUnsigned,1,0},x1 _slice(lq Data in,2,2));
elseif (Index _fb == 1)
Data_out = xFix({xlUnsigned,1,0},x1_slice(lq_Data in,1,1));
else
Data out = xFix({xlUnsigned,1,0},x1 _slice(lq _Data in,0,0));
end

elseif (Vg_en_fb==1)
if (Index_fb == 11)
Data_out =
xFix({xlUnsigned,1,0},xl_slice(Vg_Data_in,11,11));
elseif (Index_fb == 10)
Data_out =
xFix({xlUnsigned,1,0},xl_slice(Vg Data_in,10,10));
elseif (Index _fb == 9)
Data_out = xFix({xlUnsigned,1,0},x1_slice(Vq_Data in,9,9));
elseif (Index_fb == 8)
Data out = xFix({xlUnsigned,1,0},x1 _slice(Vq Data in,8,8));
elseif (Index _fb == 7)
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Data out = xFix({xlUnsigned,1,0},x1 _slice(Vq Data in,7,7));
elseif (Index_fb == 6)

Data_out = xFix({xlUnsigned,1,0},x1_slice(Vq_Data in,6,6));
elseif (Index_fb == 5)

Data_out = xFix({xlUnsigned,1,0},xl_slice(Vg_Data_in,5,5));
elseif (Index _fb == 4)

Data out = xFix({xlUnsigned,1,0},xl _slice(Vq Data in,4,4));
elseif (Index_fb == 3)

Data_out = xFix({xlUnsigned,1,0},x1_slice(Vq_Data in,3,3));
elseif (Index_fb == 2)

Data out = xFix({xlUnsigned,1,0},x1 _slice(Vq Data in,2,2));
elseif (Index _fb == 1)

Data_out = xFix({xlUnsigned,1,0},x1_slice(Vq_Data_in,1,1));
else

Data_out
end

xFix({xlUnsigned,1,0},xI_slice(Vg_Data _in,0,0));

elseif (1d_en_fb==1)

it (Index fb == 11)

Data_out =

xFix({xlUnsigned,1,0},xl_slice(ld_Data_in,11,11));

elseif (Index_fb == 10)

Data_out =

xFix({xlUnsigned,1,0},xl_slice(ld Data_in,10,10));

elseif (Index _fb == 9)

Data_out = xFix({xlUnsigned,1,0},x1_slice(ld Data in,9,9));
elseif (Index_fb == 8)

Data out = xFix({xlUnsigned,1,0},x1 _slice(ld Data in,8,8));
elseif (Index fb == 7)

Data out = xFix({xlUnsigned,1,0},xl _slice(ld Data in,7,7));
elseif (Index_fb == 6)

Data out = xFix({xlUnsigned,1,0},x1 _slice(ld Data in,6,6));
elseif (Index_fb == 5)

Data out = xFix({xlUnsigned,1,0},x1 _slice(ld Data in,5,5));
elseif (Index _fb == 4)

Data_out = xFix({xlUnsigned,1,0},x1_slice(ld Data in,4,4));
elseif (Index_fb == 3)

Data out = xFix({xlUnsigned,1,0},x1 _slice(ld Data in,3,3));
elseif (Index_fb == 2)

Data out = xFix({xlUnsigned,1,0},xl _slice(ld Data in,2,2));
elseif (Index_fb == 1)

Data_out = xFix({xlUnsigned,1,0},xl_slice(ld_Data_in,1,1));
else

Data out = xFix({xlUnsigned,1,0},x1 _slice(ld Data in,0,0));
end

elseif (vd_en_fb==1)
if (Index_fb == 11)
Data out =
xFix({xlUnsigned,1,0},xl_slice(vd_Data_in,11,11));
elseif (Index_fb == 10)
Data_out =
xFix({xlUnsigned,1,0},xl_slice(Vvd Data_in,10,10));
elseif (Index_fb == 9)
Data out = xFix({xlUnsigned,1,0},x1 _slice(vd Data in,9,9));
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elseif (Index fb == 8)

Data out = xFix({xlUnsigned,1,0},xl _slice(vd Data in,8,8));
elseif (Index_fb == 7)

Data_out = xFix({xlUnsigned,1,0},x1_slice(vd Data in,7,7));
elseif (Index_fb == 6)

Data out = xFix({xlUnsigned,1,0},xl _slice(vd Data in,6,6));
elseif (Index _fb == 5)

Data_out = xFix({xlUnsigned,1,0},x1_slice(vd Data in,5,5));
elseif (Index_fb == 4)

Data_out = xFix({xlUnsigned,1,0},xl_slice(vd_Data_in,4,4));
elseif (Index fb == 3)

Data out = xFix({xlUnsigned,1,0},xl _slice(vd Data in,3,3));
elseif (Index_fb == 2)

Data_out = xFix({xlUnsigned,1,0},x1_slice(vd Data in,2,2));
elseif (Index_fb == 1)

Data out = xFix({xlUnsigned,1,0},x1 _slice(vd Data in,1,1));
else

Data_out = xFix({xlUnsigned,1,0},x1_slice(vd Data in,0,0));
end

elseif (Index_fb==11)

Data out = xFix({xlUnsigned,1,0},1); %% Stop Bit
else

Data out=xFix({xlUnsigned,1,0},1);

end
else
Data_ out=xFix({xlUnsigned,1,0},0);
end
2. Manchester Encoder

function [Counter,Data_out, Busy] = ManchesterEncoder(Counter_fb,
Data _in, Send, Data fb, Busy_ fb)

COUNTER_INITIAL_VALUE =24;
HALF_OUTPUT_WIDTH = 13;

0/70/410/70/410/+0/40/0/40/0/40/0/40/+0/0/~0/0/~0/0/~0/0,
07070707070707070707070707070707070707070

%% Logic for Busy %%

0/40/20/40/40/+0/40/40/~0/20/40/~0/20/40/40/~0/40/40/~0/20/~0,
070707070707070707070707070770707070707070

if (Send == 1) & (Busy_fb == 0);
Busy = xFix({xlUnsigned, 1, 0},1);

elseif (Busy fb == 1) & (Counter_fb > 2) %count to 2 instead of zero
Busy = xFix({xlUnsigned, 1, 0},1);

else
Busy= xFix({xlUnsigned, 1, 0},0);

end

0/70/40/40/410/~0/,0/0/40/0/0/0/40/0/0/~0/,0/,0/~0/40/,0/,0/~0/~0,
07070707070707070707070707070707070707070707070

%% Logic for Data_out %%
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0/70/410/70/410/0/0/0/40/+0/40/0/0/~0/0/~0/70/~10/~0/~10/~0/~0/~0/~0,
07070707070707070707070707070707070707070707070

if (Send == 1) & (Busy_fb == 0) & (Data_in == 0) %%Start sending a 0->1
tran

Data_out=xfFix({xlUnsigned, 1, 0},0);
elseif (Send == 1) & (Busy_fb == 0) & (Data_in == 1) %%Start sending a
O->tran

Data out=xfFix({xlUnsigned, 1, 0},1);
elseif (Busy_fb == 1) & (Counter_fb == HALF_OUTPUT_WIDTH) %%Toggle
output

Data_out=xfix({xlUnsigned, 1, 0}, (Data_fb +1));
else

Data out=xfFix({xlUnsigned, 1, 0}, Data fb);
end

0/70/410/70/40/+0/40/~0/40/~0/40/~0/0/~0/20/~0/~0/~0/~0/~,0/~0/~0/~0/~0,
07070707070707070707070707070707070707070707070

%% Logic for Counter %%
96%%%%%6%%%%%%%%%%%%%%%%%%
it (Busy_fb == 0)

Counter= xFfix({xlUnsigned, 5, 0},COUNTER_INITIAL VALUE);
elseif (Counter_fb==0)

Counter= xFix({xlUnsigned, 5, 0},COUNTER_INITIAL_VALUE);
else

Counter=xFix({xlUnsigned, 5, 0},Counter_fb-1);
end

3. Manchester Decoder

function [Busy, Data_out, Counter, Data valid,Data fil] =
ManchesterDecoder (Busy_ fb, Data Delayed, Data_ in, Data out_fb,
Counter_fb, In_delayl, In_delay2)

COUNTER_INITIAL_VALUE=16; %%

%%%%%6%%%%%%%%%%%%%%%%%%%%  Checks that three samples in a row
transition
9%6%%6%%%%%%%%%%%%%%%%%%%%%% before Changing the input data
%% Filter for Data_in %%
%%9%6%6%%%6%6%%%6%6%%%%6%%% %% %% %%
if (Data_in == 0) & (In_delayl == 0) &(In_delay2 == 0) &(Data_Delayed
== 0);

Data_ Ffil=xfFix({xlUnsigned, 1, 0},0);
elseif (Data_in == 0) & (In_delayl == 0) &(In_delay2 == 0)
&(Data_Delayed == 1);

Data_fil=xfix({xlUnsigned, 1, 0},0);
elseif (Data_in == 0) & (In_delayl == 0) &(In_delay2 == 1)
&(Data_Delayed == 0);

Data_ fil=xfFix({xlUnsigned, 1, 0},0);
elseif (Data_in == 0) & (In_delayl == 0) &(In_delay2 == 1)
&(Data_Delayed == 1);

Data_fil=xfix({xlUnsigned, 1, 0},1);
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elseif (Data_in == 0) & (In_delayl == 1) &(In_delay2 == 0)
&(Data_Delayed == 0);

Data_fil=xfix({xlUnsigned, 1, 0},0);
elseif (Data_in == 0) & (In_delayl == 1) &(In_delay2 == 0)
&(Data_Delayed == 1);

Data_ Ffil=xFix({xlUnsigned, 1, 0},1);
elseif (Data_in == 0) & (In_delayl == 1) &(In_delay2 == 1)
&(Data_Delayed == 0);

Data_fil=xfFix({xlUnsigned, 1, 0},0);
elseif (Data_in == 0) & (In_delayl == 1) &(In_delay2 == 1)
&(Data_Delayed == 1);

Data_ fil=xfFix({xlUnsigned, 1, 0},1);
elseif (Data_in == 1) & (In_delayl == 0) &(In_delay2 == 0)
&(Data_Delayed == 0);

Data_fil=xfix({xlUnsigned, 1, 0},0);
elseif (Data_in == 1) & (In_delayl == 0) &(In_delay2 == 0)
&(Data_Delayed == 1);

Data_fil=xfFix({xlUnsigned, 1, 0},1);
elseif (Data_in == 1) & (In_delayl == 0) &(In_delay2 == 1)
&(Data_Delayed == 0);

Data_ Ffil=xfFix({xlUnsigned, 1, 0},0);
elseif (Data_in == 1) & (In_delayl == 0) &(In_delay2 == 1)
&(Data_Delayed == 1);

Data_fil=xfix({xlUnsigned, 1, 0},1);
elseif (Data_in == 1) & (In_delayl == 1) &(In_delay2 == 0)
&(Data_Delayed == 0);

Data_ fil=xfFix({xlUnsigned, 1, 0},0);
elseif (Data_in == 1) & (In_delayl == 1) &(In_delay2 == 0)
&(Data_Delayed == 1);

Data_fil=xfix({xlUnsigned, 1, 0},1);
elseif (Data_in == 1) & (In_delayl == 1) &(In_delay2 == 1)
&(Data_Delayed == 0);

Data_fil=xfFix({xlUnsigned, 1, 0},1);
else

Data_fil=xfix({xlUnsigned, 1, 0},1);
end

0/710/40/,0/410/~0/,0/0/0/0/0/~0/0/~0/0/40/0/10/~0/~0/~0/40,
0707070707070707070707070707070707070707070

%% Logic for Busy %%

0/10/40/0/40/+0/40/~0/40/~0/40/~0/0/~0/20/~0/~0/~0/~0/~0/~0/+0,
0707070707070707070707070707070707070707070

if (Busy_fb == 0) & (Data_fil ~= Data_Delayed);
Busy=xfix({xlUnsigned, 1, 0},1);

elseif (Busy _fb == 1) & (Counter_fb >0);
Busy=xfix({xlUnsigned, 1, 0},1);

else
Busy=xfix({xlUnsigned, 1, 0},0);

end

0/40/40/20/40/~0/40/~0/420/~0/20/~0/20/40/20/40/~0/40/~0/40/~0/40/~0/20/~0/20/40/20/40/~0/40/~0/40/~0/40/~0/20/~0/20/~0/-0,
070707070707070707070707070707070707070707070707070707070707070707070707070707070

%% Logic for Data out and Data valid %%
%6%%6%6%%%6%6%%%6%6%%%6%6%% %6 %6%% % %6%% % %6%% % %% %% %% %% %%
if (Busy fb == 0) & ((Data_fil == 1) & (Data Delayed == 0));
detected
Data_out=xFix({xlUnsigned, 1, 0},0);
Data_valid=xfix({xlUnsigned, 1, 0},1);
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elseif (Busy fb == 0) & ((Data_fil == 0) & (Data Delayed == 1));%%1->0

transition
Data_out=xfFix({xlUnsigned, 1, 0},1);
Data_valid=xFix({xlUnsigned, 1, 0},1);
else
Data out=xFix({xlUnsigned, 1, 0},0);
Data valid=xFix({xlUnsigned, 1, 0},0);
end

0/40/410/+0/40/~0/40/~0/40/~0/40/~0/20/~0/20/~0/~0/410/~0/40/~0/420/~0/40/40,
0707070707070707070707070707070707070707070707070

%% Logic for Counter %%

96%%%%%%%%%%%%%%%%%%%%%%%%

if (Busy_fb == 0) & (Data_fil ~= Data_Delayed);
Counter=xFix({xlUnsigned, 6, 0},Counter_fb-1);

elseif (Busy fb == 1) & (Counter_fb >0);
Counter=xfFix({xlUnsigned, 6, 0},Counter_fb-1);

else
Counter = xfix({xlUnsigned, 6, 0},COUNTER_INITIAL_VALUE);

end

4. Ring Decoder

function [Data_out, Ig_en, Id_en, Vg, Vd_en, Busy, Index, Write,
Counter] = RingCommDecoder(Data_in, Data valid, Iqg_en_fb, Id_en_fb,
Vg_fb, Vvd_en_fb, Busy fb, Index fb, Data out fb, Counter_fb)

START_BIT=0;
STOP_BIT=1;
DEADTIME_VALUE=40; %%
WATCHDOG_VALUE=200; %%

0/10/40/0/40/+0/40/~0/40/~0/40/~0/0/~0/20/~0/~0/~0/~0/~0/~0/+0,
0707070707070707070707070707070707070707070

%% Logic for CTR %%

96%%%%%6%%%%%%%%%%%%%%%%

iT (Data_valid==1); %% data keeps resetting the counter
Counter= xfix({xlUnsigned, 8, 0},0);

elseif (Counter_fb>WATCHDOG_VALUE) %% watchdog fault condition
Counter=xfFix({xlUnsigned, 8, 0},Counter_fb+1);

else
Counter=xFix({xlUnsigned, 8, 0},Counter_fb+1);

end

0/70/410/70/40/+0/40/0/40/0/40/~0/0/~0/0/~0/~0/~10/~0/~0/0/40,
0707070707070707070707070707070707070707070

%% Logic for Busy %%

0/70/40/70/40/+0/40/~0/40/~0/40/~0/20/~0/20/~0/~0/~0/~0/~0/~0/~0,
0707070707070707070707070707070707070707070

iT (Data_in==START_BIT) & (Data_valid==1) & (Busy_fb==0) &
(Counter_Tfb>DEADTIME_VALUE) %%Trigger condition
Busy=xfix({xlUnsigned,1,0%},1);
elseif (Busy_ fb==0)
Busy=xfix({xlUnsigned,1,0%},0);
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elseif (Data_in==STOP_BIT) & (Data valid==1) & (Index fb==11) &
(1g_en_fb==0) & (1d_en_fb==0) & (Vg_fb==0) & (Vd_en_ fb==0); %%Stop
Case
Busy=xfix({xlUnsigned,1,0},0);
elseif (Busy fb==1) %% Otherwise latch the Busy_ fb value
Busy=xfix({xlUnsigned,1,0%},1);
else
Busy=xfix({xlUnsigned,1,0},0);
end

%%9%6%6%%%6%6%%%6%6%%%%%%%%%%%

%% Logic for Index %%

96%%%%%%%%%%%%%%%%%%%%%%

if (Data_in==START BIT) & (Data valid==1) & (Busy_ fb==0) &

(Counter_Tb>DEADTIME_VALUE) %%Trigger condition
Index=xfix({xlUnsigned,4,0},11);

elseif (Busy_fb==0) %% Idle other than the trigger
Index=xfix({xlUnsigned,4,0},0);

elseif (Data_valid==0) %% Data not valid
Index=xfix({xlUnsigned, 4,0}, Index fbh);

elseif (Index_fb==11) & (Igq_en_fb==0) & (1d_en_fb==0) & (Vgq_fb==0) &

(vd_en_fb==0); %%Stop Case
Index=xfix({xlUnsigned,4,0},0);

elseif (Index fb>0) %% Decrement Condition
Index=xfix({xlUnsigned, 4,0}, Index_ fb-1);

elseif (Index_fb==0)
Index=xfix({xlUnsigned,4,0},11);

else
Index=xfix({xlUnsigned,4,0},0);

end

0/40/410/20/40/0/40/0/40/0/0/~0/0/40/0/~10/0/40/~0/0/0/40/~0/0/~0/0/~0/40,
0707070707070707070707070707070707070707070707070707070

%% Logic for Ig_en %%

%%%9%6%6%%%6%6%%%6%%%%6%%% %6%%% %% %% %%

iT (Data_in==START_BIT) & (Data_valid==1) & (Busy_fb==0) &

(Counter_fTb>DEADTIME_VALUE) %%Trigger condition
1g_en=xfix({xlUnsigned,1,0},1);

elseif (Ig_en_fb==0)
1q_en=xfix({xlUnsigned,1,0},0);

elseif (Busy_fb==0)
1g_en=xfix({xlUnsigned,1,0},0);

elseif (Data_valid==0)
1q_en=xfix({xlUnsigned,1,0},1g_en_Tbh);

elseif (Index fb>0) & (lg_en_fb==1);
Ig_en=xfix({xlUnsigned,1,0},1);

elseif (Index fb==0) & (lqg_en_fb==1)
1g_en=xfix({xlUnsigned,1,0},0);

else
1q_en=xfix({xlUnsigned,1,0},0);

end

%6%%%%%6%6%%%%% % %6%6%%%%% % %%%%%%%
%% Logic for 1d_en %%

0/40/410/20/40/0/40/0/40/0/0/~0/0/40/0/~10/0/40/0/0/0/40/~0/0/~0/0/~0/40,
0707070707070707070707070707070707070707070707070707070

if (Busy fb==0)
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I1d_en=xfix({xlUnsigned,1,0},0);

elseif (Data_valid==0)
1d_en=xfix({xlUnsigned, 1,0}, 1d_en_*Tb);

elseif (Index_fb==0) & (lg_en_fb==1) %% First instance
1d_en=xfix({xlUnsigned,1,0},1);

elseif (Index fb>0) & (Id_en_fb==1); %% Body
Id_en=xfix({xlUnsigned,1,0},1);

elseif (Index_fb==0) & (Id_en_fb==1); %%Stop case
1d_en=xfix({xlUnsigned,1,0},0);

else
Id_en=xfix({xlUnsigned,1,0},0);

end

0/40/410/0/40/0/40/0/40/0/0/~0/0/~0/0/~10/0/40/~0/0/0/40/~0/0/~0/0/~0/40,
0707070707070707070707070707070707070707070707070707070

%% Logic for Vg %%

%6%9%%%%6%6%%%%% % %6%6%%%%% % %%%%%%%

it (Busy_fb==0)
Vg=xFix({xlUnsigned,1,0},0);

elseif (Data_valid==0)
Vag=xFix({xlUnsigned,1,0},Vq_fh);

elseif (Index _fb==0) & (Id_en_fb==1) %% First instance
Vg=xFix({xlUnsigned,1,0},1);

elseif (Index_fb>0) & (Vg_fb==1); %% Body
Vag=xFix({xlUnsigned,1,0},1);

elseif (Index fh==0) & (Vg_fb==1); %%Stop case
Vag=xfix({xlUnsigned,1,0},0);

else
Vg=xFix({xlUnsigned,1,0},0);

end

0/40/410/20/40/0/40/0/40/0/0/~0/0/40/0/~10/0/40/~0/40/0/40/~0/0/~0/0/~0/40,
0707070707070707070707070707070707070707070707070707070

%% Logic for Vd_en %%

0/40/40/0/40/0/40/~0/40/~0/0/~0/20/40/+0/~10/~0/40/~0/40/~0/420/~0/20/~0/0/~0/-0,
0707070707070707070707070707070707070707070707070707070

it (Busy_fb==0)
Vd_en=xfix({xlUnsigned,1,0},0);

elseif (Data_valid==0)
Vd_en=xfix({xlUnsigned,1,0},Vd _en_*fTb);

elseif (Index fb==0) & (Vg_fb==1) %% First instance
vd_en=xfix({xlUnsigned,1,0},1);

elseif (Index_fb>0) & (Vd_en_fb==1); %% Body
Vd_en=xfix({xlUnsigned,1,0},1);

elseif (Index fb==0) & (Vd_en_fb==1); %%Stop case
Vd_en=xfix({xlUnsigned,1,0},0);

else
Vd_en=xfix({xlUnsigned,1,0},0);

end

%6%9%%%%6%6%6%%%% % %6%6%6%%% % % %%6%%%%%
%% Logic for Write
%%(Data_valid==1) &

0/40/40/0/40/0/40/~0/40/~0/0/~0/20/~0/+0/~10/+0/40/~0/40/~0/420/~0/20/~0/0/~0/-0,

if (Data_valid==1) & (Index_fb==0) & (Busy_fb==1) & ((lgq_en_fb==1) |

(1d_en_fb==1) | (Vg_fb==1) | (vd_en_fb==1));
Write=xfix({xI1Boolean},1);

else
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Write=xfix({xIBoolean,1,0},0);
end

0/40/410/40/40/0/40/0/40/0/0/~0/0/40/0/10/0/40/~0/40/0/40/~0/0/~0/0/~0/40,
0707070707070707070707070707070707070707070707070707070

%% Logic for Data_out %%

0/20/40/20/40/20/40/~0/420/~0/20/~0/20/40/+0/40/20/40/~0/40/~0/420/~0/20/~0/+0/~0/40,
0707070707070707070707070707070707070707070707070707070

it (Busy_fb==0)
Data_out=xfix({xlUnsigned,12,0},0);
elseif (Data_valid==0)
Data_ out=xfFix({xlUnsigned,12,0},Data out fh);
elseif (Data_valid==1)
it (Index_fb==11)
Data_out=xfix({xlUnsigned, 12,0}, (2048 * Data_in));
elseif (Index_ fb==10)
Data out=xfFix({xlUnsigned,12,0},Data out fb + (1024 *
Data_in));
elseif (Index_fb==9)
Data out=xFix({xlUnsigned,12,0},Data_out_fb
elseif (Index_ fb==8)
Data out=xFix({xlUnsigned,12,0},Data_out fb
elseif (Index_ fb==7)
Data out=xFix({xlUnsigned,12,0},Data out_fb
elseif (Index_fb==6)
Data out=xFix({xlUnsigned,12,0},Data_out_ fb
elseif (Index_ fb==5)
Data_out=xFix({xlUnsigned,12,0},Data_out_fb
elseif (Index_fb==4)
Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (16 * Data_in));
elseif (Index_ fb==3)
Data out=xFix({xlUnsigned,12,0},Data out fb + (8 * Data_in));
elseif (Index_ fb==2)
Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (4 * Data_in));
elseif (Index_fb==1)
Data out=xFix({xlUnsigned,12,0},(Data out fb + (2 * Data _in)));
else
Data_out=xfFix({xlUnsigned,12,0},(Data_out_fb + Data_in));

+

(512 * Data_in));

+

(256 * Data_in));

+

(128 * Data_in));

+

(64 * Data_in));

+

(32 * Data_in));

end
else

Data out=xFix({xlUnsigned,12,0}, (Data out_fb));
end

D. CHIPSCOPE CODE

function code_config(this_block)

% Revision History:
%
% 11-May-2007 (09:32 hours):

% Original code was machine generated by Xilinx®s System
Generator after parsing
% H:\Docs\work_ files\faculty forms\lab

development\buck_ converter\black box_buck.vhd
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%
%

this_block.setToplLevellLanguage("VHDL");
this_block.setEntityName("code");

% System Generator has to assume that your entity has a
combinational feed through;

% if it doesn®t, then comment out the following line:

this_block.tagAsCombinational;

this_block.addSimulinklnport("ind");
this_block.addSimulinkInport(“ila clock®);
this_block.addSimulinklnport(~ind2%);

this_block.addSimul inkOutport(“outd®);
this_block.addSimul inkOutport(®load on*);

outd_port = this_block.port(“outd®);
outd_port.setType("UFix_1 0%);
load_on_port = this_block.port(“load_on");
load_on_port.setType("UFix_1 0%);

Y ——m
if (this_block. inputTypesKnown)
% do input type checking, dynamic output type and generic setup in
this code block.

if (this_block.port("ind").width ~= 1);
this_block.setError (" Input data type for port "ind" must have
width=1_%);
end

this_block.port(®ind").useHDLVector(false);

iT (this_block.port(“ila_clock®™)._width ~= 1);
this_block.setError(" Input data type for port "ila_clock™ must
have width=1.");
end

this_block.port("ila clock®™).useHDLVector(false);
if (this_block.port("ind2").width ~= 48);
this_block.setError (" Input data type for port "ind2'" must have
width=48.");
end

end % if(inputTypesKnown)

if (this_block. inputRatesknown)
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setup_as_single_rate(this_block, "clk","ce")
end % if(inputRatesKnown)

% Add addtional source files as needed.

% |----—----—-———-

% Add files in the order in which they should be compiled.
% If two files "a.vhd" and "b.vhd" contain the entities

% entity a and entity b, and entity_a contains a

% component of type entity b, the correct sequence of

% addFile() calls would be:

% this_block.addFile("b.vhd®);

% this_block.addFile("a.vhd®);

% |----—---—-—----

% this_block.addFile("");
% this_block.addFile("");
this_block.addFile("black box buck.vhd®);

return;

function setup_as_single_rate(block,clkname,cename)
inputRates = block. inputRates;
uniquelnputRates = unique(inputRates);
if (Ilength(uniquelnputRates)==1 & uniquelnputRates(1)==InT)
block.setError("The inputs to this block cannot all be constant.

return;
end
if (uniquelnputRates(end) == Inf)
hasConstantlnput = true;
uniquelnputRates = uniquelnputRates(l:end-1);
end

if (Ilength(uniquelnputRates) ~= 1)

block.setError("The inputs to this block must run at a single
rate.");

return;

end

thelnputRate = uniquelnputRates(l);

for 1 = 1:block.numSimulinkOutports
block.outport(i).setRate(thelnputRate);

end

block.addClkCEPair(clkname,cename,thelnputRate);

return;
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